Loading…

On 1 / N diagrammatics in the SYK model beyond the conformal limit

In the present work we discuss aspects of the 1 / N expansion in the SYK model, formulated in terms of the semiclassical expansion of the bilocal field path integral. We derive cutting rules, which are applicable for all planar vertices in the bilocal field diagrams. We show that these cutting rules...

Full description

Saved in:
Bibliographic Details
Main Authors: Aref’eva, Irina, Khramtsov, Mikhail, Tikhanovskaya, Maria
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c391t-b001898cf36631c6d8ca22d0f1a01e9b19d8370d49db0195b96dbbaae2ded6223
cites cdi_FETCH-LOGICAL-c391t-b001898cf36631c6d8ca22d0f1a01e9b19d8370d49db0195b96dbbaae2ded6223
container_end_page
container_issue
container_start_page 6008
container_title
container_volume 191
creator Aref’eva, Irina
Khramtsov, Mikhail
Tikhanovskaya, Maria
description In the present work we discuss aspects of the 1 / N expansion in the SYK model, formulated in terms of the semiclassical expansion of the bilocal field path integral. We derive cutting rules, which are applicable for all planar vertices in the bilocal field diagrams. We show that these cutting rules lead to novel identities on higher-point correlators, which could be used to constrain their form beyond the solvable conformal limit. We also demonstrate how the cutting rules can simplify the computation of amplitudes on an example of the six-point function.
doi_str_mv 10.1051/epjconf/201819106008
format conference_proceeding
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ecc4d6581659436d87553216a75a0136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ecc4d6581659436d87553216a75a0136</doaj_id><sourcerecordid>2127647901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-b001898cf36631c6d8ca22d0f1a01e9b19d8370d49db0195b96dbbaae2ded6223</originalsourceid><addsrcrecordid>eNpNkM1OwzAQhC0EElXpG3CwxLl0106c-AgVPxUVPQASnCzHdkqiJC5Oeujb49IKdS-7Gq3mGw0h1wi3CCnO3KY2vitnDDBHiSAA8jMyYggwBUw-z0_uSzLp-xricCl5KkbkftVRpDP6Sm2l10G3rR4q09Oqo8O3o29fL7T11jW0cDvf2T9xj_Oh1Q1tqrYarshFqZveTY57TD4eH97nz9Pl6mkxv1tODZc4TAuIAWVuSi4ERyNsbjRjFkrUgE4WKG3OM7CJtAWgTAspbFFo7Zh1VjDGx2Rx8LVe12oTqlaHnfK6Un-CD2ulQwzfOOWMSaxIcxSpTHhEZWnKGQqdpRHGRfS6OXhtgv_Zun5Qtd-GLsZXDFkmkkzGvzFJDl8m-L4PrvynIqh9-epYvjotn_8Cz3J14w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2127647901</pqid></control><display><type>conference_proceeding</type><title>On 1 / N diagrammatics in the SYK model beyond the conformal limit</title><source>Full-Text Journals in Chemistry (Open access)</source><source>Publicly Available Content (ProQuest)</source><creator>Aref’eva, Irina ; Khramtsov, Mikhail ; Tikhanovskaya, Maria</creator><contributor>Levkov, D.G. ; Volkova, V.E. ; Zhezher, Y.V. ; Matveev, V.A. ; Rubakov, V.A.</contributor><creatorcontrib>Aref’eva, Irina ; Khramtsov, Mikhail ; Tikhanovskaya, Maria ; Levkov, D.G. ; Volkova, V.E. ; Zhezher, Y.V. ; Matveev, V.A. ; Rubakov, V.A.</creatorcontrib><description>In the present work we discuss aspects of the 1 / N expansion in the SYK model, formulated in terms of the semiclassical expansion of the bilocal field path integral. We derive cutting rules, which are applicable for all planar vertices in the bilocal field diagrams. We show that these cutting rules lead to novel identities on higher-point correlators, which could be used to constrain their form beyond the solvable conformal limit. We also demonstrate how the cutting rules can simplify the computation of amplitudes on an example of the six-point function.</description><identifier>ISSN: 2100-014X</identifier><identifier>ISSN: 2101-6275</identifier><identifier>EISSN: 2100-014X</identifier><identifier>DOI: 10.1051/epjconf/201819106008</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Apexes ; Correlators ; Cutting parameters</subject><ispartof>EPJ Web of conferences, 2018, Vol.191, p.6008</ispartof><rights>2018. This work is licensed under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-b001898cf36631c6d8ca22d0f1a01e9b19d8370d49db0195b96dbbaae2ded6223</citedby><cites>FETCH-LOGICAL-c391t-b001898cf36631c6d8ca22d0f1a01e9b19d8370d49db0195b96dbbaae2ded6223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2127647901?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,25753,27924,27925,37012,44590</link.rule.ids></links><search><contributor>Levkov, D.G.</contributor><contributor>Volkova, V.E.</contributor><contributor>Zhezher, Y.V.</contributor><contributor>Matveev, V.A.</contributor><contributor>Rubakov, V.A.</contributor><creatorcontrib>Aref’eva, Irina</creatorcontrib><creatorcontrib>Khramtsov, Mikhail</creatorcontrib><creatorcontrib>Tikhanovskaya, Maria</creatorcontrib><title>On 1 / N diagrammatics in the SYK model beyond the conformal limit</title><title>EPJ Web of conferences</title><description>In the present work we discuss aspects of the 1 / N expansion in the SYK model, formulated in terms of the semiclassical expansion of the bilocal field path integral. We derive cutting rules, which are applicable for all planar vertices in the bilocal field diagrams. We show that these cutting rules lead to novel identities on higher-point correlators, which could be used to constrain their form beyond the solvable conformal limit. We also demonstrate how the cutting rules can simplify the computation of amplitudes on an example of the six-point function.</description><subject>Apexes</subject><subject>Correlators</subject><subject>Cutting parameters</subject><issn>2100-014X</issn><issn>2101-6275</issn><issn>2100-014X</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkM1OwzAQhC0EElXpG3CwxLl0106c-AgVPxUVPQASnCzHdkqiJC5Oeujb49IKdS-7Gq3mGw0h1wi3CCnO3KY2vitnDDBHiSAA8jMyYggwBUw-z0_uSzLp-xricCl5KkbkftVRpDP6Sm2l10G3rR4q09Oqo8O3o29fL7T11jW0cDvf2T9xj_Oh1Q1tqrYarshFqZveTY57TD4eH97nz9Pl6mkxv1tODZc4TAuIAWVuSi4ERyNsbjRjFkrUgE4WKG3OM7CJtAWgTAspbFFo7Zh1VjDGx2Rx8LVe12oTqlaHnfK6Un-CD2ulQwzfOOWMSaxIcxSpTHhEZWnKGQqdpRHGRfS6OXhtgv_Zun5Qtd-GLsZXDFkmkkzGvzFJDl8m-L4PrvynIqh9-epYvjotn_8Cz3J14w</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Aref’eva, Irina</creator><creator>Khramtsov, Mikhail</creator><creator>Tikhanovskaya, Maria</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20180101</creationdate><title>On 1 / N diagrammatics in the SYK model beyond the conformal limit</title><author>Aref’eva, Irina ; Khramtsov, Mikhail ; Tikhanovskaya, Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-b001898cf36631c6d8ca22d0f1a01e9b19d8370d49db0195b96dbbaae2ded6223</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Apexes</topic><topic>Correlators</topic><topic>Cutting parameters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aref’eva, Irina</creatorcontrib><creatorcontrib>Khramtsov, Mikhail</creatorcontrib><creatorcontrib>Tikhanovskaya, Maria</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aref’eva, Irina</au><au>Khramtsov, Mikhail</au><au>Tikhanovskaya, Maria</au><au>Levkov, D.G.</au><au>Volkova, V.E.</au><au>Zhezher, Y.V.</au><au>Matveev, V.A.</au><au>Rubakov, V.A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>On 1 / N diagrammatics in the SYK model beyond the conformal limit</atitle><btitle>EPJ Web of conferences</btitle><date>2018-01-01</date><risdate>2018</risdate><volume>191</volume><spage>6008</spage><pages>6008-</pages><issn>2100-014X</issn><issn>2101-6275</issn><eissn>2100-014X</eissn><abstract>In the present work we discuss aspects of the 1 / N expansion in the SYK model, formulated in terms of the semiclassical expansion of the bilocal field path integral. We derive cutting rules, which are applicable for all planar vertices in the bilocal field diagrams. We show that these cutting rules lead to novel identities on higher-point correlators, which could be used to constrain their form beyond the solvable conformal limit. We also demonstrate how the cutting rules can simplify the computation of amplitudes on an example of the six-point function.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/epjconf/201819106008</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2100-014X
ispartof EPJ Web of conferences, 2018, Vol.191, p.6008
issn 2100-014X
2101-6275
2100-014X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ecc4d6581659436d87553216a75a0136
source Full-Text Journals in Chemistry (Open access); Publicly Available Content (ProQuest)
subjects Apexes
Correlators
Cutting parameters
title On 1 / N diagrammatics in the SYK model beyond the conformal limit
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A52%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=On%201%20/%20N%20diagrammatics%20in%20the%20SYK%20model%20beyond%20the%20conformal%20limit&rft.btitle=EPJ%20Web%20of%20conferences&rft.au=Aref%E2%80%99eva,%20Irina&rft.date=2018-01-01&rft.volume=191&rft.spage=6008&rft.pages=6008-&rft.issn=2100-014X&rft.eissn=2100-014X&rft_id=info:doi/10.1051/epjconf/201819106008&rft_dat=%3Cproquest_doaj_%3E2127647901%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c391t-b001898cf36631c6d8ca22d0f1a01e9b19d8370d49db0195b96dbbaae2ded6223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2127647901&rft_id=info:pmid/&rfr_iscdi=true