Loading…

On size, radius and minimum degree

Graph Theory Let G be a finite connected graph. We give an asymptotically tight upper bound on the size of G in terms of order, radius and minimum degree. Our result is a strengthening of an old classical theorem of Vizing (1967) if minimum degree is prescribed.

Saved in:
Bibliographic Details
Published in:Discrete mathematics and theoretical computer science 2014-01, Vol.16 no. 1 (Graph Theory), p.1-5
Main Author: Mukwembi, Simon
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5
container_issue Graph Theory
container_start_page 1
container_title Discrete mathematics and theoretical computer science
container_volume 16 no. 1
creator Mukwembi, Simon
description Graph Theory Let G be a finite connected graph. We give an asymptotically tight upper bound on the size of G in terms of order, radius and minimum degree. Our result is a strengthening of an old classical theorem of Vizing (1967) if minimum degree is prescribed.
doi_str_mv 10.46298/dmtcs.1265
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ece93f7602d344c2b58b2f217b2ea2c2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ece93f7602d344c2b58b2f217b2ea2c2</doaj_id><sourcerecordid>3214405611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-89bfdf1a03a812b5dfd566f0ebb42f8201c9deda29302f555db23041635958cf3</originalsourceid><addsrcrecordid>eNpVkE1LAzEQhoMoWKsn_8CiJ9HWZPKxyVGK2kKhFz2HbD7qlu5uTXYF_fVuuyJ6muHl4RnmReiS4CkToOS9q1qbpgQEP0IjQgWfSMzx8Z_9FJ2ltMGYgGL5CF2t6iyVX_4ui8aVXcpM7bKqrMuqqzLn19H7c3QSzDb5i585Rq9Pjy-z-WS5el7MHpYTy4C2E6mK4AIxmBpJoOAuOC5EwL4oGAQJmFjlvDOgKIbAOXcFUMyIoFxxaQMdo8XgdY3Z6F0sKxM_dWNKfQiauNYmtqXdeu2tVzTkAoOjjNn-miwgAMkL8AYs9K6bwfVmtv9U84el3meYkFwBkA_Ss9cDu4vNe-dTqzdNF-v-VU2YEpICUNFTtwNlY5NS9OFXS7A-lK8P5et9-fQb2lt0lQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1496832236</pqid></control><display><type>article</type><title>On size, radius and minimum degree</title><source>Publicly Available Content Database</source><creator>Mukwembi, Simon</creator><creatorcontrib>Mukwembi, Simon</creatorcontrib><description>Graph Theory Let G be a finite connected graph. We give an asymptotically tight upper bound on the size of G in terms of order, radius and minimum degree. Our result is a strengthening of an old classical theorem of Vizing (1967) if minimum degree is prescribed.</description><identifier>ISSN: 1365-8050</identifier><identifier>ISSN: 1462-7264</identifier><identifier>EISSN: 1365-8050</identifier><identifier>DOI: 10.46298/dmtcs.1265</identifier><language>eng</language><publisher>Nancy: DMTCS</publisher><subject>[info.info-dm] computer science [cs]/discrete mathematics [cs.dm] ; Combinatorics ; Computer Science ; Discrete Mathematics ; graph theory ; Graphs ; Theorems</subject><ispartof>Discrete mathematics and theoretical computer science, 2014-01, Vol.16 no. 1 (Graph Theory), p.1-5</ispartof><rights>Copyright DMTCS 2014</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1496832236?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,25731,27901,27902,36989,44566</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-01179221$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mukwembi, Simon</creatorcontrib><title>On size, radius and minimum degree</title><title>Discrete mathematics and theoretical computer science</title><description>Graph Theory Let G be a finite connected graph. We give an asymptotically tight upper bound on the size of G in terms of order, radius and minimum degree. Our result is a strengthening of an old classical theorem of Vizing (1967) if minimum degree is prescribed.</description><subject>[info.info-dm] computer science [cs]/discrete mathematics [cs.dm]</subject><subject>Combinatorics</subject><subject>Computer Science</subject><subject>Discrete Mathematics</subject><subject>graph theory</subject><subject>Graphs</subject><subject>Theorems</subject><issn>1365-8050</issn><issn>1462-7264</issn><issn>1365-8050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVkE1LAzEQhoMoWKsn_8CiJ9HWZPKxyVGK2kKhFz2HbD7qlu5uTXYF_fVuuyJ6muHl4RnmReiS4CkToOS9q1qbpgQEP0IjQgWfSMzx8Z_9FJ2ltMGYgGL5CF2t6iyVX_4ui8aVXcpM7bKqrMuqqzLn19H7c3QSzDb5i585Rq9Pjy-z-WS5el7MHpYTy4C2E6mK4AIxmBpJoOAuOC5EwL4oGAQJmFjlvDOgKIbAOXcFUMyIoFxxaQMdo8XgdY3Z6F0sKxM_dWNKfQiauNYmtqXdeu2tVzTkAoOjjNn-miwgAMkL8AYs9K6bwfVmtv9U84el3meYkFwBkA_Ss9cDu4vNe-dTqzdNF-v-VU2YEpICUNFTtwNlY5NS9OFXS7A-lK8P5et9-fQb2lt0lQ</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Mukwembi, Simon</creator><general>DMTCS</general><general>Discrete Mathematics &amp; Theoretical Computer Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>1XC</scope><scope>VOOES</scope><scope>DOA</scope></search><sort><creationdate>20140101</creationdate><title>On size, radius and minimum degree</title><author>Mukwembi, Simon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-89bfdf1a03a812b5dfd566f0ebb42f8201c9deda29302f555db23041635958cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>[info.info-dm] computer science [cs]/discrete mathematics [cs.dm]</topic><topic>Combinatorics</topic><topic>Computer Science</topic><topic>Discrete Mathematics</topic><topic>graph theory</topic><topic>Graphs</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mukwembi, Simon</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Discrete mathematics and theoretical computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mukwembi, Simon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On size, radius and minimum degree</atitle><jtitle>Discrete mathematics and theoretical computer science</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>16 no. 1</volume><issue>Graph Theory</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1365-8050</issn><issn>1462-7264</issn><eissn>1365-8050</eissn><abstract>Graph Theory Let G be a finite connected graph. We give an asymptotically tight upper bound on the size of G in terms of order, radius and minimum degree. Our result is a strengthening of an old classical theorem of Vizing (1967) if minimum degree is prescribed.</abstract><cop>Nancy</cop><pub>DMTCS</pub><doi>10.46298/dmtcs.1265</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1365-8050
ispartof Discrete mathematics and theoretical computer science, 2014-01, Vol.16 no. 1 (Graph Theory), p.1-5
issn 1365-8050
1462-7264
1365-8050
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ece93f7602d344c2b58b2f217b2ea2c2
source Publicly Available Content Database
subjects [info.info-dm] computer science [cs]/discrete mathematics [cs.dm]
Combinatorics
Computer Science
Discrete Mathematics
graph theory
Graphs
Theorems
title On size, radius and minimum degree
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T02%3A51%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20size,%20radius%20and%20minimum%20degree&rft.jtitle=Discrete%20mathematics%20and%20theoretical%20computer%20science&rft.au=Mukwembi,%20Simon&rft.date=2014-01-01&rft.volume=16%20no.%201&rft.issue=Graph%20Theory&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1365-8050&rft.eissn=1365-8050&rft_id=info:doi/10.46298/dmtcs.1265&rft_dat=%3Cproquest_doaj_%3E3214405611%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c423t-89bfdf1a03a812b5dfd566f0ebb42f8201c9deda29302f555db23041635958cf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1496832236&rft_id=info:pmid/&rfr_iscdi=true