Loading…

PLS-CNN-BiLSTM: An End-to-End Algorithm-Based Savitzky–Golay Smoothing and Evolution Strategy for Load Forecasting

This paper proposes an effective deep learning framework for Short-Term Load Forecasting (STLF) of multivariate time series. The proposed model consists of a hybrid Convolutional neural network-Bidirectional Long Short-Term Memory (CBiLSTM) based on the Evolution Strategy (ES) method and the Savitzk...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2020-10, Vol.13 (20), p.5464
Main Authors: Massaoudi, Mohamed, S. Refaat, Shady, Abu-Rub, Haitham, Chihi, Ines, Oueslati, Fakhreddine S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c361t-fd0fd6bdd08f35312964d72fa9eed0e264430cf6666f8a39622e65b886da13e53
cites cdi_FETCH-LOGICAL-c361t-fd0fd6bdd08f35312964d72fa9eed0e264430cf6666f8a39622e65b886da13e53
container_end_page
container_issue 20
container_start_page 5464
container_title Energies (Basel)
container_volume 13
creator Massaoudi, Mohamed
S. Refaat, Shady
Abu-Rub, Haitham
Chihi, Ines
Oueslati, Fakhreddine S.
description This paper proposes an effective deep learning framework for Short-Term Load Forecasting (STLF) of multivariate time series. The proposed model consists of a hybrid Convolutional neural network-Bidirectional Long Short-Term Memory (CBiLSTM) based on the Evolution Strategy (ES) method and the Savitzky–Golay (SG) filter (SG-CBiLSTM). The adopted methodology incorporates the virtue of different prepossessing blocks to enhance the performance of the CBiLSTM model. In particular, a data-augmentation strategy is employed to synthetically improve the feature representation of the CBiLSTM model. The augmented data is forwarded to the Partial Least Square (PLS) method to select the most informative features above the predefined threshold. Next, the SG algorithm is computed for smoothing the load to enhance the learning capabilities of the underlying system. The structure of the SG-CBiLSTM for the ISO New England dataset is optimized using the ES technique. Finally, the CBiLSTM model generates output forecasts. The proposed approach demonstrates a remarkable improvement in the performance of the original CBiLSTM model. Furthermore, the experimental results strongly confirm the high effectiveness of the proposed SG-CBiLSTM model compared to the state-of-the-art techniques.
doi_str_mv 10.3390/en13205464
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ecf058e5a3144823b247354d8bc8989b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ecf058e5a3144823b247354d8bc8989b</doaj_id><sourcerecordid>2535607275</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-fd0fd6bdd08f35312964d72fa9eed0e264430cf6666f8a39622e65b886da13e53</originalsourceid><addsrcrecordid>eNpNUcFOGzEUXKEiEQEXvsASt0outp_t9XILUUiRthRp4Wx513ayYbOmXidSOPUf-of9EpamapnLPD2NZkaaLLug5AtAQa5cT4ERwSU_yia0KCSmJIdPH-6T7HwY1mQEAAWASZYeygrP7u_xTVtWj9-u0bRH897iFPBIaNotQ2zTaoNvzOAsqsyuTa_P-98_fy1CZ_ao2oSQVm2_RGaUz3eh26Y29KhK0SS33CMfIiqDseg2RNeYIY3as-zYm25w53_5NHu6nT_OvuLy--JuNi1xA5Im7C3xVtbWEuVBAGWF5DZn3hTOWeKY5BxI4-UIrwwUkjEnRa2UtIaCE3Ca3R18bTBr_RLbjYl7HUyr_zxCXGoTU9t0TrvGE6GcMEA5VwxqxnMQ3Kq6UYUq6tHr8uD1EsOPrRuSXodt7Mf6mgkQkuQsf0_8fFA1MQxDdP5fKiX6fST9fyR4A96EgwY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2535607275</pqid></control><display><type>article</type><title>PLS-CNN-BiLSTM: An End-to-End Algorithm-Based Savitzky–Golay Smoothing and Evolution Strategy for Load Forecasting</title><source>Publicly Available Content (ProQuest)</source><creator>Massaoudi, Mohamed ; S. Refaat, Shady ; Abu-Rub, Haitham ; Chihi, Ines ; Oueslati, Fakhreddine S.</creator><creatorcontrib>Massaoudi, Mohamed ; S. Refaat, Shady ; Abu-Rub, Haitham ; Chihi, Ines ; Oueslati, Fakhreddine S.</creatorcontrib><description>This paper proposes an effective deep learning framework for Short-Term Load Forecasting (STLF) of multivariate time series. The proposed model consists of a hybrid Convolutional neural network-Bidirectional Long Short-Term Memory (CBiLSTM) based on the Evolution Strategy (ES) method and the Savitzky–Golay (SG) filter (SG-CBiLSTM). The adopted methodology incorporates the virtue of different prepossessing blocks to enhance the performance of the CBiLSTM model. In particular, a data-augmentation strategy is employed to synthetically improve the feature representation of the CBiLSTM model. The augmented data is forwarded to the Partial Least Square (PLS) method to select the most informative features above the predefined threshold. Next, the SG algorithm is computed for smoothing the load to enhance the learning capabilities of the underlying system. The structure of the SG-CBiLSTM for the ISO New England dataset is optimized using the ES technique. Finally, the CBiLSTM model generates output forecasts. The proposed approach demonstrates a remarkable improvement in the performance of the original CBiLSTM model. Furthermore, the experimental results strongly confirm the high effectiveness of the proposed SG-CBiLSTM model compared to the state-of-the-art techniques.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en13205464</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Alternative energy sources ; Bidirectional Long Short-Term Memory (BiLSTM) ; Consumption ; Convolutional Neural Network (CNN) ; Data smoothing ; evolution strategy ; Evolutionary algorithms ; Forecasting ; Long short-term memory ; Natural language ; Neural networks ; Partial Least Square (PLS) method ; Savitzky–Golay ; Short-Term Load Forecasting (STLF) ; Smoothing ; Time series</subject><ispartof>Energies (Basel), 2020-10, Vol.13 (20), p.5464</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-fd0fd6bdd08f35312964d72fa9eed0e264430cf6666f8a39622e65b886da13e53</citedby><cites>FETCH-LOGICAL-c361t-fd0fd6bdd08f35312964d72fa9eed0e264430cf6666f8a39622e65b886da13e53</cites><orcidid>0000-0002-9388-2115 ; 0000-0001-9392-6141</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2535607275/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2535607275?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Massaoudi, Mohamed</creatorcontrib><creatorcontrib>S. Refaat, Shady</creatorcontrib><creatorcontrib>Abu-Rub, Haitham</creatorcontrib><creatorcontrib>Chihi, Ines</creatorcontrib><creatorcontrib>Oueslati, Fakhreddine S.</creatorcontrib><title>PLS-CNN-BiLSTM: An End-to-End Algorithm-Based Savitzky–Golay Smoothing and Evolution Strategy for Load Forecasting</title><title>Energies (Basel)</title><description>This paper proposes an effective deep learning framework for Short-Term Load Forecasting (STLF) of multivariate time series. The proposed model consists of a hybrid Convolutional neural network-Bidirectional Long Short-Term Memory (CBiLSTM) based on the Evolution Strategy (ES) method and the Savitzky–Golay (SG) filter (SG-CBiLSTM). The adopted methodology incorporates the virtue of different prepossessing blocks to enhance the performance of the CBiLSTM model. In particular, a data-augmentation strategy is employed to synthetically improve the feature representation of the CBiLSTM model. The augmented data is forwarded to the Partial Least Square (PLS) method to select the most informative features above the predefined threshold. Next, the SG algorithm is computed for smoothing the load to enhance the learning capabilities of the underlying system. The structure of the SG-CBiLSTM for the ISO New England dataset is optimized using the ES technique. Finally, the CBiLSTM model generates output forecasts. The proposed approach demonstrates a remarkable improvement in the performance of the original CBiLSTM model. Furthermore, the experimental results strongly confirm the high effectiveness of the proposed SG-CBiLSTM model compared to the state-of-the-art techniques.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Alternative energy sources</subject><subject>Bidirectional Long Short-Term Memory (BiLSTM)</subject><subject>Consumption</subject><subject>Convolutional Neural Network (CNN)</subject><subject>Data smoothing</subject><subject>evolution strategy</subject><subject>Evolutionary algorithms</subject><subject>Forecasting</subject><subject>Long short-term memory</subject><subject>Natural language</subject><subject>Neural networks</subject><subject>Partial Least Square (PLS) method</subject><subject>Savitzky–Golay</subject><subject>Short-Term Load Forecasting (STLF)</subject><subject>Smoothing</subject><subject>Time series</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFOGzEUXKEiEQEXvsASt0outp_t9XILUUiRthRp4Wx513ayYbOmXidSOPUf-of9EpamapnLPD2NZkaaLLug5AtAQa5cT4ERwSU_yia0KCSmJIdPH-6T7HwY1mQEAAWASZYeygrP7u_xTVtWj9-u0bRH897iFPBIaNotQ2zTaoNvzOAsqsyuTa_P-98_fy1CZ_ao2oSQVm2_RGaUz3eh26Y29KhK0SS33CMfIiqDseg2RNeYIY3as-zYm25w53_5NHu6nT_OvuLy--JuNi1xA5Im7C3xVtbWEuVBAGWF5DZn3hTOWeKY5BxI4-UIrwwUkjEnRa2UtIaCE3Ca3R18bTBr_RLbjYl7HUyr_zxCXGoTU9t0TrvGE6GcMEA5VwxqxnMQ3Kq6UYUq6tHr8uD1EsOPrRuSXodt7Mf6mgkQkuQsf0_8fFA1MQxDdP5fKiX6fST9fyR4A96EgwY</recordid><startdate>20201019</startdate><enddate>20201019</enddate><creator>Massaoudi, Mohamed</creator><creator>S. Refaat, Shady</creator><creator>Abu-Rub, Haitham</creator><creator>Chihi, Ines</creator><creator>Oueslati, Fakhreddine S.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9388-2115</orcidid><orcidid>https://orcid.org/0000-0001-9392-6141</orcidid></search><sort><creationdate>20201019</creationdate><title>PLS-CNN-BiLSTM: An End-to-End Algorithm-Based Savitzky–Golay Smoothing and Evolution Strategy for Load Forecasting</title><author>Massaoudi, Mohamed ; S. Refaat, Shady ; Abu-Rub, Haitham ; Chihi, Ines ; Oueslati, Fakhreddine S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-fd0fd6bdd08f35312964d72fa9eed0e264430cf6666f8a39622e65b886da13e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Alternative energy sources</topic><topic>Bidirectional Long Short-Term Memory (BiLSTM)</topic><topic>Consumption</topic><topic>Convolutional Neural Network (CNN)</topic><topic>Data smoothing</topic><topic>evolution strategy</topic><topic>Evolutionary algorithms</topic><topic>Forecasting</topic><topic>Long short-term memory</topic><topic>Natural language</topic><topic>Neural networks</topic><topic>Partial Least Square (PLS) method</topic><topic>Savitzky–Golay</topic><topic>Short-Term Load Forecasting (STLF)</topic><topic>Smoothing</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Massaoudi, Mohamed</creatorcontrib><creatorcontrib>S. Refaat, Shady</creatorcontrib><creatorcontrib>Abu-Rub, Haitham</creatorcontrib><creatorcontrib>Chihi, Ines</creatorcontrib><creatorcontrib>Oueslati, Fakhreddine S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Massaoudi, Mohamed</au><au>S. Refaat, Shady</au><au>Abu-Rub, Haitham</au><au>Chihi, Ines</au><au>Oueslati, Fakhreddine S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PLS-CNN-BiLSTM: An End-to-End Algorithm-Based Savitzky–Golay Smoothing and Evolution Strategy for Load Forecasting</atitle><jtitle>Energies (Basel)</jtitle><date>2020-10-19</date><risdate>2020</risdate><volume>13</volume><issue>20</issue><spage>5464</spage><pages>5464-</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>This paper proposes an effective deep learning framework for Short-Term Load Forecasting (STLF) of multivariate time series. The proposed model consists of a hybrid Convolutional neural network-Bidirectional Long Short-Term Memory (CBiLSTM) based on the Evolution Strategy (ES) method and the Savitzky–Golay (SG) filter (SG-CBiLSTM). The adopted methodology incorporates the virtue of different prepossessing blocks to enhance the performance of the CBiLSTM model. In particular, a data-augmentation strategy is employed to synthetically improve the feature representation of the CBiLSTM model. The augmented data is forwarded to the Partial Least Square (PLS) method to select the most informative features above the predefined threshold. Next, the SG algorithm is computed for smoothing the load to enhance the learning capabilities of the underlying system. The structure of the SG-CBiLSTM for the ISO New England dataset is optimized using the ES technique. Finally, the CBiLSTM model generates output forecasts. The proposed approach demonstrates a remarkable improvement in the performance of the original CBiLSTM model. Furthermore, the experimental results strongly confirm the high effectiveness of the proposed SG-CBiLSTM model compared to the state-of-the-art techniques.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en13205464</doi><orcidid>https://orcid.org/0000-0002-9388-2115</orcidid><orcidid>https://orcid.org/0000-0001-9392-6141</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1073
ispartof Energies (Basel), 2020-10, Vol.13 (20), p.5464
issn 1996-1073
1996-1073
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ecf058e5a3144823b247354d8bc8989b
source Publicly Available Content (ProQuest)
subjects Accuracy
Algorithms
Alternative energy sources
Bidirectional Long Short-Term Memory (BiLSTM)
Consumption
Convolutional Neural Network (CNN)
Data smoothing
evolution strategy
Evolutionary algorithms
Forecasting
Long short-term memory
Natural language
Neural networks
Partial Least Square (PLS) method
Savitzky–Golay
Short-Term Load Forecasting (STLF)
Smoothing
Time series
title PLS-CNN-BiLSTM: An End-to-End Algorithm-Based Savitzky–Golay Smoothing and Evolution Strategy for Load Forecasting
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A21%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PLS-CNN-BiLSTM:%20An%20End-to-End%20Algorithm-Based%20Savitzky%E2%80%93Golay%20Smoothing%20and%20Evolution%20Strategy%20for%20Load%20Forecasting&rft.jtitle=Energies%20(Basel)&rft.au=Massaoudi,%20Mohamed&rft.date=2020-10-19&rft.volume=13&rft.issue=20&rft.spage=5464&rft.pages=5464-&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en13205464&rft_dat=%3Cproquest_doaj_%3E2535607275%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-fd0fd6bdd08f35312964d72fa9eed0e264430cf6666f8a39622e65b886da13e53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2535607275&rft_id=info:pmid/&rfr_iscdi=true