Loading…
PLS-CNN-BiLSTM: An End-to-End Algorithm-Based Savitzky–Golay Smoothing and Evolution Strategy for Load Forecasting
This paper proposes an effective deep learning framework for Short-Term Load Forecasting (STLF) of multivariate time series. The proposed model consists of a hybrid Convolutional neural network-Bidirectional Long Short-Term Memory (CBiLSTM) based on the Evolution Strategy (ES) method and the Savitzk...
Saved in:
Published in: | Energies (Basel) 2020-10, Vol.13 (20), p.5464 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c361t-fd0fd6bdd08f35312964d72fa9eed0e264430cf6666f8a39622e65b886da13e53 |
---|---|
cites | cdi_FETCH-LOGICAL-c361t-fd0fd6bdd08f35312964d72fa9eed0e264430cf6666f8a39622e65b886da13e53 |
container_end_page | |
container_issue | 20 |
container_start_page | 5464 |
container_title | Energies (Basel) |
container_volume | 13 |
creator | Massaoudi, Mohamed S. Refaat, Shady Abu-Rub, Haitham Chihi, Ines Oueslati, Fakhreddine S. |
description | This paper proposes an effective deep learning framework for Short-Term Load Forecasting (STLF) of multivariate time series. The proposed model consists of a hybrid Convolutional neural network-Bidirectional Long Short-Term Memory (CBiLSTM) based on the Evolution Strategy (ES) method and the Savitzky–Golay (SG) filter (SG-CBiLSTM). The adopted methodology incorporates the virtue of different prepossessing blocks to enhance the performance of the CBiLSTM model. In particular, a data-augmentation strategy is employed to synthetically improve the feature representation of the CBiLSTM model. The augmented data is forwarded to the Partial Least Square (PLS) method to select the most informative features above the predefined threshold. Next, the SG algorithm is computed for smoothing the load to enhance the learning capabilities of the underlying system. The structure of the SG-CBiLSTM for the ISO New England dataset is optimized using the ES technique. Finally, the CBiLSTM model generates output forecasts. The proposed approach demonstrates a remarkable improvement in the performance of the original CBiLSTM model. Furthermore, the experimental results strongly confirm the high effectiveness of the proposed SG-CBiLSTM model compared to the state-of-the-art techniques. |
doi_str_mv | 10.3390/en13205464 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ecf058e5a3144823b247354d8bc8989b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ecf058e5a3144823b247354d8bc8989b</doaj_id><sourcerecordid>2535607275</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-fd0fd6bdd08f35312964d72fa9eed0e264430cf6666f8a39622e65b886da13e53</originalsourceid><addsrcrecordid>eNpNUcFOGzEUXKEiEQEXvsASt0outp_t9XILUUiRthRp4Wx513ayYbOmXidSOPUf-of9EpamapnLPD2NZkaaLLug5AtAQa5cT4ERwSU_yia0KCSmJIdPH-6T7HwY1mQEAAWASZYeygrP7u_xTVtWj9-u0bRH897iFPBIaNotQ2zTaoNvzOAsqsyuTa_P-98_fy1CZ_ao2oSQVm2_RGaUz3eh26Y29KhK0SS33CMfIiqDseg2RNeYIY3as-zYm25w53_5NHu6nT_OvuLy--JuNi1xA5Im7C3xVtbWEuVBAGWF5DZn3hTOWeKY5BxI4-UIrwwUkjEnRa2UtIaCE3Ca3R18bTBr_RLbjYl7HUyr_zxCXGoTU9t0TrvGE6GcMEA5VwxqxnMQ3Kq6UYUq6tHr8uD1EsOPrRuSXodt7Mf6mgkQkuQsf0_8fFA1MQxDdP5fKiX6fST9fyR4A96EgwY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2535607275</pqid></control><display><type>article</type><title>PLS-CNN-BiLSTM: An End-to-End Algorithm-Based Savitzky–Golay Smoothing and Evolution Strategy for Load Forecasting</title><source>Publicly Available Content (ProQuest)</source><creator>Massaoudi, Mohamed ; S. Refaat, Shady ; Abu-Rub, Haitham ; Chihi, Ines ; Oueslati, Fakhreddine S.</creator><creatorcontrib>Massaoudi, Mohamed ; S. Refaat, Shady ; Abu-Rub, Haitham ; Chihi, Ines ; Oueslati, Fakhreddine S.</creatorcontrib><description>This paper proposes an effective deep learning framework for Short-Term Load Forecasting (STLF) of multivariate time series. The proposed model consists of a hybrid Convolutional neural network-Bidirectional Long Short-Term Memory (CBiLSTM) based on the Evolution Strategy (ES) method and the Savitzky–Golay (SG) filter (SG-CBiLSTM). The adopted methodology incorporates the virtue of different prepossessing blocks to enhance the performance of the CBiLSTM model. In particular, a data-augmentation strategy is employed to synthetically improve the feature representation of the CBiLSTM model. The augmented data is forwarded to the Partial Least Square (PLS) method to select the most informative features above the predefined threshold. Next, the SG algorithm is computed for smoothing the load to enhance the learning capabilities of the underlying system. The structure of the SG-CBiLSTM for the ISO New England dataset is optimized using the ES technique. Finally, the CBiLSTM model generates output forecasts. The proposed approach demonstrates a remarkable improvement in the performance of the original CBiLSTM model. Furthermore, the experimental results strongly confirm the high effectiveness of the proposed SG-CBiLSTM model compared to the state-of-the-art techniques.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en13205464</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Alternative energy sources ; Bidirectional Long Short-Term Memory (BiLSTM) ; Consumption ; Convolutional Neural Network (CNN) ; Data smoothing ; evolution strategy ; Evolutionary algorithms ; Forecasting ; Long short-term memory ; Natural language ; Neural networks ; Partial Least Square (PLS) method ; Savitzky–Golay ; Short-Term Load Forecasting (STLF) ; Smoothing ; Time series</subject><ispartof>Energies (Basel), 2020-10, Vol.13 (20), p.5464</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-fd0fd6bdd08f35312964d72fa9eed0e264430cf6666f8a39622e65b886da13e53</citedby><cites>FETCH-LOGICAL-c361t-fd0fd6bdd08f35312964d72fa9eed0e264430cf6666f8a39622e65b886da13e53</cites><orcidid>0000-0002-9388-2115 ; 0000-0001-9392-6141</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2535607275/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2535607275?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Massaoudi, Mohamed</creatorcontrib><creatorcontrib>S. Refaat, Shady</creatorcontrib><creatorcontrib>Abu-Rub, Haitham</creatorcontrib><creatorcontrib>Chihi, Ines</creatorcontrib><creatorcontrib>Oueslati, Fakhreddine S.</creatorcontrib><title>PLS-CNN-BiLSTM: An End-to-End Algorithm-Based Savitzky–Golay Smoothing and Evolution Strategy for Load Forecasting</title><title>Energies (Basel)</title><description>This paper proposes an effective deep learning framework for Short-Term Load Forecasting (STLF) of multivariate time series. The proposed model consists of a hybrid Convolutional neural network-Bidirectional Long Short-Term Memory (CBiLSTM) based on the Evolution Strategy (ES) method and the Savitzky–Golay (SG) filter (SG-CBiLSTM). The adopted methodology incorporates the virtue of different prepossessing blocks to enhance the performance of the CBiLSTM model. In particular, a data-augmentation strategy is employed to synthetically improve the feature representation of the CBiLSTM model. The augmented data is forwarded to the Partial Least Square (PLS) method to select the most informative features above the predefined threshold. Next, the SG algorithm is computed for smoothing the load to enhance the learning capabilities of the underlying system. The structure of the SG-CBiLSTM for the ISO New England dataset is optimized using the ES technique. Finally, the CBiLSTM model generates output forecasts. The proposed approach demonstrates a remarkable improvement in the performance of the original CBiLSTM model. Furthermore, the experimental results strongly confirm the high effectiveness of the proposed SG-CBiLSTM model compared to the state-of-the-art techniques.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Alternative energy sources</subject><subject>Bidirectional Long Short-Term Memory (BiLSTM)</subject><subject>Consumption</subject><subject>Convolutional Neural Network (CNN)</subject><subject>Data smoothing</subject><subject>evolution strategy</subject><subject>Evolutionary algorithms</subject><subject>Forecasting</subject><subject>Long short-term memory</subject><subject>Natural language</subject><subject>Neural networks</subject><subject>Partial Least Square (PLS) method</subject><subject>Savitzky–Golay</subject><subject>Short-Term Load Forecasting (STLF)</subject><subject>Smoothing</subject><subject>Time series</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFOGzEUXKEiEQEXvsASt0outp_t9XILUUiRthRp4Wx513ayYbOmXidSOPUf-of9EpamapnLPD2NZkaaLLug5AtAQa5cT4ERwSU_yia0KCSmJIdPH-6T7HwY1mQEAAWASZYeygrP7u_xTVtWj9-u0bRH897iFPBIaNotQ2zTaoNvzOAsqsyuTa_P-98_fy1CZ_ao2oSQVm2_RGaUz3eh26Y29KhK0SS33CMfIiqDseg2RNeYIY3as-zYm25w53_5NHu6nT_OvuLy--JuNi1xA5Im7C3xVtbWEuVBAGWF5DZn3hTOWeKY5BxI4-UIrwwUkjEnRa2UtIaCE3Ca3R18bTBr_RLbjYl7HUyr_zxCXGoTU9t0TrvGE6GcMEA5VwxqxnMQ3Kq6UYUq6tHr8uD1EsOPrRuSXodt7Mf6mgkQkuQsf0_8fFA1MQxDdP5fKiX6fST9fyR4A96EgwY</recordid><startdate>20201019</startdate><enddate>20201019</enddate><creator>Massaoudi, Mohamed</creator><creator>S. Refaat, Shady</creator><creator>Abu-Rub, Haitham</creator><creator>Chihi, Ines</creator><creator>Oueslati, Fakhreddine S.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9388-2115</orcidid><orcidid>https://orcid.org/0000-0001-9392-6141</orcidid></search><sort><creationdate>20201019</creationdate><title>PLS-CNN-BiLSTM: An End-to-End Algorithm-Based Savitzky–Golay Smoothing and Evolution Strategy for Load Forecasting</title><author>Massaoudi, Mohamed ; S. Refaat, Shady ; Abu-Rub, Haitham ; Chihi, Ines ; Oueslati, Fakhreddine S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-fd0fd6bdd08f35312964d72fa9eed0e264430cf6666f8a39622e65b886da13e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Alternative energy sources</topic><topic>Bidirectional Long Short-Term Memory (BiLSTM)</topic><topic>Consumption</topic><topic>Convolutional Neural Network (CNN)</topic><topic>Data smoothing</topic><topic>evolution strategy</topic><topic>Evolutionary algorithms</topic><topic>Forecasting</topic><topic>Long short-term memory</topic><topic>Natural language</topic><topic>Neural networks</topic><topic>Partial Least Square (PLS) method</topic><topic>Savitzky–Golay</topic><topic>Short-Term Load Forecasting (STLF)</topic><topic>Smoothing</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Massaoudi, Mohamed</creatorcontrib><creatorcontrib>S. Refaat, Shady</creatorcontrib><creatorcontrib>Abu-Rub, Haitham</creatorcontrib><creatorcontrib>Chihi, Ines</creatorcontrib><creatorcontrib>Oueslati, Fakhreddine S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Massaoudi, Mohamed</au><au>S. Refaat, Shady</au><au>Abu-Rub, Haitham</au><au>Chihi, Ines</au><au>Oueslati, Fakhreddine S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PLS-CNN-BiLSTM: An End-to-End Algorithm-Based Savitzky–Golay Smoothing and Evolution Strategy for Load Forecasting</atitle><jtitle>Energies (Basel)</jtitle><date>2020-10-19</date><risdate>2020</risdate><volume>13</volume><issue>20</issue><spage>5464</spage><pages>5464-</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>This paper proposes an effective deep learning framework for Short-Term Load Forecasting (STLF) of multivariate time series. The proposed model consists of a hybrid Convolutional neural network-Bidirectional Long Short-Term Memory (CBiLSTM) based on the Evolution Strategy (ES) method and the Savitzky–Golay (SG) filter (SG-CBiLSTM). The adopted methodology incorporates the virtue of different prepossessing blocks to enhance the performance of the CBiLSTM model. In particular, a data-augmentation strategy is employed to synthetically improve the feature representation of the CBiLSTM model. The augmented data is forwarded to the Partial Least Square (PLS) method to select the most informative features above the predefined threshold. Next, the SG algorithm is computed for smoothing the load to enhance the learning capabilities of the underlying system. The structure of the SG-CBiLSTM for the ISO New England dataset is optimized using the ES technique. Finally, the CBiLSTM model generates output forecasts. The proposed approach demonstrates a remarkable improvement in the performance of the original CBiLSTM model. Furthermore, the experimental results strongly confirm the high effectiveness of the proposed SG-CBiLSTM model compared to the state-of-the-art techniques.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en13205464</doi><orcidid>https://orcid.org/0000-0002-9388-2115</orcidid><orcidid>https://orcid.org/0000-0001-9392-6141</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1073 |
ispartof | Energies (Basel), 2020-10, Vol.13 (20), p.5464 |
issn | 1996-1073 1996-1073 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ecf058e5a3144823b247354d8bc8989b |
source | Publicly Available Content (ProQuest) |
subjects | Accuracy Algorithms Alternative energy sources Bidirectional Long Short-Term Memory (BiLSTM) Consumption Convolutional Neural Network (CNN) Data smoothing evolution strategy Evolutionary algorithms Forecasting Long short-term memory Natural language Neural networks Partial Least Square (PLS) method Savitzky–Golay Short-Term Load Forecasting (STLF) Smoothing Time series |
title | PLS-CNN-BiLSTM: An End-to-End Algorithm-Based Savitzky–Golay Smoothing and Evolution Strategy for Load Forecasting |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A21%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PLS-CNN-BiLSTM:%20An%20End-to-End%20Algorithm-Based%20Savitzky%E2%80%93Golay%20Smoothing%20and%20Evolution%20Strategy%20for%20Load%20Forecasting&rft.jtitle=Energies%20(Basel)&rft.au=Massaoudi,%20Mohamed&rft.date=2020-10-19&rft.volume=13&rft.issue=20&rft.spage=5464&rft.pages=5464-&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en13205464&rft_dat=%3Cproquest_doaj_%3E2535607275%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-fd0fd6bdd08f35312964d72fa9eed0e264430cf6666f8a39622e65b886da13e53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2535607275&rft_id=info:pmid/&rfr_iscdi=true |