Loading…

Seasonal Comparisons of Himawari-8 AHI and MODIS Vegetation Indices over Latitudinal Australian Grassland Sites

The Advanced Himawari Imager (AHI) on board the Himawari-8 geostationary (GEO) satellite offers comparable spectral and spatial resolutions as low earth orbiting (LEO) sensors such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) sens...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Switzerland), 2020-08, Vol.12 (15), p.2494
Main Authors: Tran, Ngoc Nguyen, Huete, Alfredo, Nguyen, Ha, Grant, Ian, Miura, Tomoaki, Ma, Xuanlong, Lyapustin, Alexei, Wang, Yujie, Ebert, Elizabeth
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Advanced Himawari Imager (AHI) on board the Himawari-8 geostationary (GEO) satellite offers comparable spectral and spatial resolutions as low earth orbiting (LEO) sensors such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) sensors, but with hypertemporal image acquisition capability. This raises the possibility of improved monitoring of highly dynamic ecosystems, such as grasslands, including fine-scale phenology retrievals from vegetation index (VI) time series. However, identifying and understanding how GEO VI temporal profiles would be different from traditional LEO VIs need to be evaluated, especially with the new generation of geostationary satellites, with unfamiliar observation geometries not experienced with MODIS, VIIRS, or Advanced Very High Resolution Radiometer (AVHRR) VI time series data. The objectives of this study were to investigate the variations in AHI reflectances and normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), and two-band EVI (EVI2) in relation to diurnal phase angle variations, and to compare AHI VI seasonal datasets with MODIS VIs (standard and sun and view angle-adjusted VIs) over a functional range of dry grassland sites in eastern Australia. Strong NDVI diurnal variations and negative NDVI hotspot effects were found due to differential red and NIR band sensitivities to diurnal phase angle changes. In contrast, EVI and EVI2 were nearly insensitive to diurnal phase angle variations and displayed nearly flat diurnal profiles without noticeable hotspot influences. At seasonal time scales, AHI NDVI values were consistently lower than MODIS NDVI values, while AHI EVI and EVI2 values were significantly higher than MODIS EVI and EVI2 values, respectively. We attributed the cross-sensor differences in VI patterns to the year-round smaller phase angles and backscatter observations from AHI, in which the sunlit canopies induced a positive EVI/ EVI2 response and negative NDVI response. BRDF adjustments of MODIS VIs to solar noon and to the oblique view zenith angle of AHI resulted in strong cross-sensor convergence of VI values (R2 > 0.94, mean absolute difference
ISSN:2072-4292
2072-4292
DOI:10.3390/rs12152494