Loading…

Gate-free state preparation for fast variational quantum eigensolver simulations

The variational quantum eigensolver is currently the flagship algorithm for solving electronic structure problems on near-term quantum computers. The algorithm involves implementing a sequence of parameterized gates on quantum hardware to generate a target quantum state, and then measuring the molec...

Full description

Saved in:
Bibliographic Details
Published in:npj quantum information 2021-10, Vol.7 (1), p.1-11, Article 155
Main Authors: Meitei, Oinam Romesh, Gard, Bryan T., Barron, George S., Pappas, David P., Economou, Sophia E., Barnes, Edwin, Mayhall, Nicholas J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c456t-ffa31c0d3530fa850750e223991191a89ebd0f321313b329db8679b05a95f6933
cites cdi_FETCH-LOGICAL-c456t-ffa31c0d3530fa850750e223991191a89ebd0f321313b329db8679b05a95f6933
container_end_page 11
container_issue 1
container_start_page 1
container_title npj quantum information
container_volume 7
creator Meitei, Oinam Romesh
Gard, Bryan T.
Barron, George S.
Pappas, David P.
Economou, Sophia E.
Barnes, Edwin
Mayhall, Nicholas J.
description The variational quantum eigensolver is currently the flagship algorithm for solving electronic structure problems on near-term quantum computers. The algorithm involves implementing a sequence of parameterized gates on quantum hardware to generate a target quantum state, and then measuring the molecular energy. Due to finite coherence times and gate errors, the number of gates that can be implemented remains limited. In this work, we propose an alternative algorithm where device-level pulse shapes are variationally optimized for the state preparation rather than using an abstract-level quantum circuit. In doing so, the coherence time required for the state preparation is drastically reduced. We numerically demonstrate this by directly optimizing pulse shapes which accurately model the dissociation of H 2 and HeH + , and we compute the ground state energy for LiH with four transmons where we see reductions in state preparation times of roughly three orders of magnitude compared to gate-based strategies.
doi_str_mv 10.1038/s41534-021-00493-0
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ed031a80d25e4753873ffb3b3b7e51ac</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ed031a80d25e4753873ffb3b3b7e51ac</doaj_id><sourcerecordid>2586666846</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-ffa31c0d3530fa850750e223991191a89ebd0f321313b329db8679b05a95f6933</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhS0EUqulf6CnCM6BsR0n9hFV0FaqBAc4WxNnvPUqG29tpxL_HneDgBO-eDR679PoPcauOXzgIPXH3HEluxYEbwE6I1t4xS4FqL7tpR5e_zNfsKucDwDAjdCi45fs2y0Wan0ianKpY3NKdMKEJcSl8TE1HnNpnjGF8wrn5mnFpazHhsKelhznZ0pNDsd1PgvyW_bG45zp6ve_Yz--fP5-c9c-fL29v_n00LpO9aX1HiV3MEklwaNWMCggIaQxnBuO2tA4gZeCSy5HKcw06n4wIyg0yvdGyh2737hTxIM9pXDE9NNGDPa8iGlvMZXgZrI0gaxImISiblA1B-n9WLHjQIqjq6x3GyvmEmx2oZB7dHFZyBXLtRiGmuqOvd9EpxSfVsrFHuKaaiLZCqX7-nTXV5XYVC7FnBP5P6dxsC9t2a0tW9uy57YsVJPcTLmKlz2lv-j_uH4Bv--WSQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2586666846</pqid></control><display><type>article</type><title>Gate-free state preparation for fast variational quantum eigensolver simulations</title><source>Publicly Available Content (ProQuest)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Meitei, Oinam Romesh ; Gard, Bryan T. ; Barron, George S. ; Pappas, David P. ; Economou, Sophia E. ; Barnes, Edwin ; Mayhall, Nicholas J.</creator><creatorcontrib>Meitei, Oinam Romesh ; Gard, Bryan T. ; Barron, George S. ; Pappas, David P. ; Economou, Sophia E. ; Barnes, Edwin ; Mayhall, Nicholas J. ; Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA (United States)</creatorcontrib><description>The variational quantum eigensolver is currently the flagship algorithm for solving electronic structure problems on near-term quantum computers. The algorithm involves implementing a sequence of parameterized gates on quantum hardware to generate a target quantum state, and then measuring the molecular energy. Due to finite coherence times and gate errors, the number of gates that can be implemented remains limited. In this work, we propose an alternative algorithm where device-level pulse shapes are variationally optimized for the state preparation rather than using an abstract-level quantum circuit. In doing so, the coherence time required for the state preparation is drastically reduced. We numerically demonstrate this by directly optimizing pulse shapes which accurately model the dissociation of H 2 and HeH + , and we compute the ground state energy for LiH with four transmons where we see reductions in state preparation times of roughly three orders of magnitude compared to gate-based strategies.</description><identifier>ISSN: 2056-6387</identifier><identifier>EISSN: 2056-6387</identifier><identifier>DOI: 10.1038/s41534-021-00493-0</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/638/563 ; 639/638/563/758 ; 639/766/259 ; 639/766/483/481 ; Algorithms ; Classical and Quantum Gravitation ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; computation ; Computers ; information theory ; Physics ; Physics and Astronomy ; quantum chemistry ; Quantum Computing ; Quantum Field Theories ; quantum information ; Quantum Information Technology ; Quantum Physics ; Relativity Theory ; Spintronics ; String Theory ; theoretical chemistry</subject><ispartof>npj quantum information, 2021-10, Vol.7 (1), p.1-11, Article 155</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-ffa31c0d3530fa850750e223991191a89ebd0f321313b329db8679b05a95f6933</citedby><cites>FETCH-LOGICAL-c456t-ffa31c0d3530fa850750e223991191a89ebd0f321313b329db8679b05a95f6933</cites><orcidid>0000-0003-4696-9362 ; 0000-0001-5529-1675 ; 0000-0002-1312-9781 ; 0000-0002-2705-2383 ; 0000-0002-1939-5589 ; 0000000219395589 ; 0000000227052383 ; 0000000346969362 ; 0000000155291675 ; 0000000213129781</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2586666846/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2586666846?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,44590,75126</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1827749$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Meitei, Oinam Romesh</creatorcontrib><creatorcontrib>Gard, Bryan T.</creatorcontrib><creatorcontrib>Barron, George S.</creatorcontrib><creatorcontrib>Pappas, David P.</creatorcontrib><creatorcontrib>Economou, Sophia E.</creatorcontrib><creatorcontrib>Barnes, Edwin</creatorcontrib><creatorcontrib>Mayhall, Nicholas J.</creatorcontrib><creatorcontrib>Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA (United States)</creatorcontrib><title>Gate-free state preparation for fast variational quantum eigensolver simulations</title><title>npj quantum information</title><addtitle>npj Quantum Inf</addtitle><description>The variational quantum eigensolver is currently the flagship algorithm for solving electronic structure problems on near-term quantum computers. The algorithm involves implementing a sequence of parameterized gates on quantum hardware to generate a target quantum state, and then measuring the molecular energy. Due to finite coherence times and gate errors, the number of gates that can be implemented remains limited. In this work, we propose an alternative algorithm where device-level pulse shapes are variationally optimized for the state preparation rather than using an abstract-level quantum circuit. In doing so, the coherence time required for the state preparation is drastically reduced. We numerically demonstrate this by directly optimizing pulse shapes which accurately model the dissociation of H 2 and HeH + , and we compute the ground state energy for LiH with four transmons where we see reductions in state preparation times of roughly three orders of magnitude compared to gate-based strategies.</description><subject>639/638/563</subject><subject>639/638/563/758</subject><subject>639/766/259</subject><subject>639/766/483/481</subject><subject>Algorithms</subject><subject>Classical and Quantum Gravitation</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>computation</subject><subject>Computers</subject><subject>information theory</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>quantum chemistry</subject><subject>Quantum Computing</subject><subject>Quantum Field Theories</subject><subject>quantum information</subject><subject>Quantum Information Technology</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Spintronics</subject><subject>String Theory</subject><subject>theoretical chemistry</subject><issn>2056-6387</issn><issn>2056-6387</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kUFv1DAQhS0EUqulf6CnCM6BsR0n9hFV0FaqBAc4WxNnvPUqG29tpxL_HneDgBO-eDR679PoPcauOXzgIPXH3HEluxYEbwE6I1t4xS4FqL7tpR5e_zNfsKucDwDAjdCi45fs2y0Wan0ianKpY3NKdMKEJcSl8TE1HnNpnjGF8wrn5mnFpazHhsKelhznZ0pNDsd1PgvyW_bG45zp6ve_Yz--fP5-c9c-fL29v_n00LpO9aX1HiV3MEklwaNWMCggIaQxnBuO2tA4gZeCSy5HKcw06n4wIyg0yvdGyh2737hTxIM9pXDE9NNGDPa8iGlvMZXgZrI0gaxImISiblA1B-n9WLHjQIqjq6x3GyvmEmx2oZB7dHFZyBXLtRiGmuqOvd9EpxSfVsrFHuKaaiLZCqX7-nTXV5XYVC7FnBP5P6dxsC9t2a0tW9uy57YsVJPcTLmKlz2lv-j_uH4Bv--WSQ</recordid><startdate>20211027</startdate><enddate>20211027</enddate><creator>Meitei, Oinam Romesh</creator><creator>Gard, Bryan T.</creator><creator>Barron, George S.</creator><creator>Pappas, David P.</creator><creator>Economou, Sophia E.</creator><creator>Barnes, Edwin</creator><creator>Mayhall, Nicholas J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Partner Journals</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>OTOTI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4696-9362</orcidid><orcidid>https://orcid.org/0000-0001-5529-1675</orcidid><orcidid>https://orcid.org/0000-0002-1312-9781</orcidid><orcidid>https://orcid.org/0000-0002-2705-2383</orcidid><orcidid>https://orcid.org/0000-0002-1939-5589</orcidid><orcidid>https://orcid.org/0000000219395589</orcidid><orcidid>https://orcid.org/0000000227052383</orcidid><orcidid>https://orcid.org/0000000346969362</orcidid><orcidid>https://orcid.org/0000000155291675</orcidid><orcidid>https://orcid.org/0000000213129781</orcidid></search><sort><creationdate>20211027</creationdate><title>Gate-free state preparation for fast variational quantum eigensolver simulations</title><author>Meitei, Oinam Romesh ; Gard, Bryan T. ; Barron, George S. ; Pappas, David P. ; Economou, Sophia E. ; Barnes, Edwin ; Mayhall, Nicholas J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-ffa31c0d3530fa850750e223991191a89ebd0f321313b329db8679b05a95f6933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/638/563</topic><topic>639/638/563/758</topic><topic>639/766/259</topic><topic>639/766/483/481</topic><topic>Algorithms</topic><topic>Classical and Quantum Gravitation</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>computation</topic><topic>Computers</topic><topic>information theory</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>quantum chemistry</topic><topic>Quantum Computing</topic><topic>Quantum Field Theories</topic><topic>quantum information</topic><topic>Quantum Information Technology</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Spintronics</topic><topic>String Theory</topic><topic>theoretical chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meitei, Oinam Romesh</creatorcontrib><creatorcontrib>Gard, Bryan T.</creatorcontrib><creatorcontrib>Barron, George S.</creatorcontrib><creatorcontrib>Pappas, David P.</creatorcontrib><creatorcontrib>Economou, Sophia E.</creatorcontrib><creatorcontrib>Barnes, Edwin</creatorcontrib><creatorcontrib>Mayhall, Nicholas J.</creatorcontrib><creatorcontrib>Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA (United States)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>OSTI.GOV</collection><collection>Directory of Open Access Journals</collection><jtitle>npj quantum information</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meitei, Oinam Romesh</au><au>Gard, Bryan T.</au><au>Barron, George S.</au><au>Pappas, David P.</au><au>Economou, Sophia E.</au><au>Barnes, Edwin</au><au>Mayhall, Nicholas J.</au><aucorp>Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gate-free state preparation for fast variational quantum eigensolver simulations</atitle><jtitle>npj quantum information</jtitle><stitle>npj Quantum Inf</stitle><date>2021-10-27</date><risdate>2021</risdate><volume>7</volume><issue>1</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><artnum>155</artnum><issn>2056-6387</issn><eissn>2056-6387</eissn><abstract>The variational quantum eigensolver is currently the flagship algorithm for solving electronic structure problems on near-term quantum computers. The algorithm involves implementing a sequence of parameterized gates on quantum hardware to generate a target quantum state, and then measuring the molecular energy. Due to finite coherence times and gate errors, the number of gates that can be implemented remains limited. In this work, we propose an alternative algorithm where device-level pulse shapes are variationally optimized for the state preparation rather than using an abstract-level quantum circuit. In doing so, the coherence time required for the state preparation is drastically reduced. We numerically demonstrate this by directly optimizing pulse shapes which accurately model the dissociation of H 2 and HeH + , and we compute the ground state energy for LiH with four transmons where we see reductions in state preparation times of roughly three orders of magnitude compared to gate-based strategies.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41534-021-00493-0</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4696-9362</orcidid><orcidid>https://orcid.org/0000-0001-5529-1675</orcidid><orcidid>https://orcid.org/0000-0002-1312-9781</orcidid><orcidid>https://orcid.org/0000-0002-2705-2383</orcidid><orcidid>https://orcid.org/0000-0002-1939-5589</orcidid><orcidid>https://orcid.org/0000000219395589</orcidid><orcidid>https://orcid.org/0000000227052383</orcidid><orcidid>https://orcid.org/0000000346969362</orcidid><orcidid>https://orcid.org/0000000155291675</orcidid><orcidid>https://orcid.org/0000000213129781</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2056-6387
ispartof npj quantum information, 2021-10, Vol.7 (1), p.1-11, Article 155
issn 2056-6387
2056-6387
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ed031a80d25e4753873ffb3b3b7e51ac
source Publicly Available Content (ProQuest); Springer Nature - nature.com Journals - Fully Open Access
subjects 639/638/563
639/638/563/758
639/766/259
639/766/483/481
Algorithms
Classical and Quantum Gravitation
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
computation
Computers
information theory
Physics
Physics and Astronomy
quantum chemistry
Quantum Computing
Quantum Field Theories
quantum information
Quantum Information Technology
Quantum Physics
Relativity Theory
Spintronics
String Theory
theoretical chemistry
title Gate-free state preparation for fast variational quantum eigensolver simulations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A39%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gate-free%20state%20preparation%20for%20fast%20variational%20quantum%20eigensolver%20simulations&rft.jtitle=npj%20quantum%20information&rft.au=Meitei,%20Oinam%20Romesh&rft.aucorp=Virginia%20Polytechnic%20Institute%20and%20State%20University%20(Virginia%20Tech),%20Blacksburg,%20VA%20(United%20States)&rft.date=2021-10-27&rft.volume=7&rft.issue=1&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.artnum=155&rft.issn=2056-6387&rft.eissn=2056-6387&rft_id=info:doi/10.1038/s41534-021-00493-0&rft_dat=%3Cproquest_doaj_%3E2586666846%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c456t-ffa31c0d3530fa850750e223991191a89ebd0f321313b329db8679b05a95f6933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2586666846&rft_id=info:pmid/&rfr_iscdi=true