Loading…
Gate-free state preparation for fast variational quantum eigensolver simulations
The variational quantum eigensolver is currently the flagship algorithm for solving electronic structure problems on near-term quantum computers. The algorithm involves implementing a sequence of parameterized gates on quantum hardware to generate a target quantum state, and then measuring the molec...
Saved in:
Published in: | npj quantum information 2021-10, Vol.7 (1), p.1-11, Article 155 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c456t-ffa31c0d3530fa850750e223991191a89ebd0f321313b329db8679b05a95f6933 |
---|---|
cites | cdi_FETCH-LOGICAL-c456t-ffa31c0d3530fa850750e223991191a89ebd0f321313b329db8679b05a95f6933 |
container_end_page | 11 |
container_issue | 1 |
container_start_page | 1 |
container_title | npj quantum information |
container_volume | 7 |
creator | Meitei, Oinam Romesh Gard, Bryan T. Barron, George S. Pappas, David P. Economou, Sophia E. Barnes, Edwin Mayhall, Nicholas J. |
description | The variational quantum eigensolver is currently the flagship algorithm for solving electronic structure problems on near-term quantum computers. The algorithm involves implementing a sequence of parameterized gates on quantum hardware to generate a target quantum state, and then measuring the molecular energy. Due to finite coherence times and gate errors, the number of gates that can be implemented remains limited. In this work, we propose an alternative algorithm where device-level pulse shapes are variationally optimized for the state preparation rather than using an abstract-level quantum circuit. In doing so, the coherence time required for the state preparation is drastically reduced. We numerically demonstrate this by directly optimizing pulse shapes which accurately model the dissociation of H
2
and HeH
+
, and we compute the ground state energy for LiH with four transmons where we see reductions in state preparation times of roughly three orders of magnitude compared to gate-based strategies. |
doi_str_mv | 10.1038/s41534-021-00493-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ed031a80d25e4753873ffb3b3b7e51ac</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ed031a80d25e4753873ffb3b3b7e51ac</doaj_id><sourcerecordid>2586666846</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-ffa31c0d3530fa850750e223991191a89ebd0f321313b329db8679b05a95f6933</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhS0EUqulf6CnCM6BsR0n9hFV0FaqBAc4WxNnvPUqG29tpxL_HneDgBO-eDR679PoPcauOXzgIPXH3HEluxYEbwE6I1t4xS4FqL7tpR5e_zNfsKucDwDAjdCi45fs2y0Wan0ianKpY3NKdMKEJcSl8TE1HnNpnjGF8wrn5mnFpazHhsKelhznZ0pNDsd1PgvyW_bG45zp6ve_Yz--fP5-c9c-fL29v_n00LpO9aX1HiV3MEklwaNWMCggIaQxnBuO2tA4gZeCSy5HKcw06n4wIyg0yvdGyh2737hTxIM9pXDE9NNGDPa8iGlvMZXgZrI0gaxImISiblA1B-n9WLHjQIqjq6x3GyvmEmx2oZB7dHFZyBXLtRiGmuqOvd9EpxSfVsrFHuKaaiLZCqX7-nTXV5XYVC7FnBP5P6dxsC9t2a0tW9uy57YsVJPcTLmKlz2lv-j_uH4Bv--WSQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2586666846</pqid></control><display><type>article</type><title>Gate-free state preparation for fast variational quantum eigensolver simulations</title><source>Publicly Available Content (ProQuest)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Meitei, Oinam Romesh ; Gard, Bryan T. ; Barron, George S. ; Pappas, David P. ; Economou, Sophia E. ; Barnes, Edwin ; Mayhall, Nicholas J.</creator><creatorcontrib>Meitei, Oinam Romesh ; Gard, Bryan T. ; Barron, George S. ; Pappas, David P. ; Economou, Sophia E. ; Barnes, Edwin ; Mayhall, Nicholas J. ; Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA (United States)</creatorcontrib><description>The variational quantum eigensolver is currently the flagship algorithm for solving electronic structure problems on near-term quantum computers. The algorithm involves implementing a sequence of parameterized gates on quantum hardware to generate a target quantum state, and then measuring the molecular energy. Due to finite coherence times and gate errors, the number of gates that can be implemented remains limited. In this work, we propose an alternative algorithm where device-level pulse shapes are variationally optimized for the state preparation rather than using an abstract-level quantum circuit. In doing so, the coherence time required for the state preparation is drastically reduced. We numerically demonstrate this by directly optimizing pulse shapes which accurately model the dissociation of H
2
and HeH
+
, and we compute the ground state energy for LiH with four transmons where we see reductions in state preparation times of roughly three orders of magnitude compared to gate-based strategies.</description><identifier>ISSN: 2056-6387</identifier><identifier>EISSN: 2056-6387</identifier><identifier>DOI: 10.1038/s41534-021-00493-0</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/638/563 ; 639/638/563/758 ; 639/766/259 ; 639/766/483/481 ; Algorithms ; Classical and Quantum Gravitation ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; computation ; Computers ; information theory ; Physics ; Physics and Astronomy ; quantum chemistry ; Quantum Computing ; Quantum Field Theories ; quantum information ; Quantum Information Technology ; Quantum Physics ; Relativity Theory ; Spintronics ; String Theory ; theoretical chemistry</subject><ispartof>npj quantum information, 2021-10, Vol.7 (1), p.1-11, Article 155</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-ffa31c0d3530fa850750e223991191a89ebd0f321313b329db8679b05a95f6933</citedby><cites>FETCH-LOGICAL-c456t-ffa31c0d3530fa850750e223991191a89ebd0f321313b329db8679b05a95f6933</cites><orcidid>0000-0003-4696-9362 ; 0000-0001-5529-1675 ; 0000-0002-1312-9781 ; 0000-0002-2705-2383 ; 0000-0002-1939-5589 ; 0000000219395589 ; 0000000227052383 ; 0000000346969362 ; 0000000155291675 ; 0000000213129781</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2586666846/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2586666846?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,44590,75126</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1827749$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Meitei, Oinam Romesh</creatorcontrib><creatorcontrib>Gard, Bryan T.</creatorcontrib><creatorcontrib>Barron, George S.</creatorcontrib><creatorcontrib>Pappas, David P.</creatorcontrib><creatorcontrib>Economou, Sophia E.</creatorcontrib><creatorcontrib>Barnes, Edwin</creatorcontrib><creatorcontrib>Mayhall, Nicholas J.</creatorcontrib><creatorcontrib>Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA (United States)</creatorcontrib><title>Gate-free state preparation for fast variational quantum eigensolver simulations</title><title>npj quantum information</title><addtitle>npj Quantum Inf</addtitle><description>The variational quantum eigensolver is currently the flagship algorithm for solving electronic structure problems on near-term quantum computers. The algorithm involves implementing a sequence of parameterized gates on quantum hardware to generate a target quantum state, and then measuring the molecular energy. Due to finite coherence times and gate errors, the number of gates that can be implemented remains limited. In this work, we propose an alternative algorithm where device-level pulse shapes are variationally optimized for the state preparation rather than using an abstract-level quantum circuit. In doing so, the coherence time required for the state preparation is drastically reduced. We numerically demonstrate this by directly optimizing pulse shapes which accurately model the dissociation of H
2
and HeH
+
, and we compute the ground state energy for LiH with four transmons where we see reductions in state preparation times of roughly three orders of magnitude compared to gate-based strategies.</description><subject>639/638/563</subject><subject>639/638/563/758</subject><subject>639/766/259</subject><subject>639/766/483/481</subject><subject>Algorithms</subject><subject>Classical and Quantum Gravitation</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>computation</subject><subject>Computers</subject><subject>information theory</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>quantum chemistry</subject><subject>Quantum Computing</subject><subject>Quantum Field Theories</subject><subject>quantum information</subject><subject>Quantum Information Technology</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Spintronics</subject><subject>String Theory</subject><subject>theoretical chemistry</subject><issn>2056-6387</issn><issn>2056-6387</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kUFv1DAQhS0EUqulf6CnCM6BsR0n9hFV0FaqBAc4WxNnvPUqG29tpxL_HneDgBO-eDR679PoPcauOXzgIPXH3HEluxYEbwE6I1t4xS4FqL7tpR5e_zNfsKucDwDAjdCi45fs2y0Wan0ianKpY3NKdMKEJcSl8TE1HnNpnjGF8wrn5mnFpazHhsKelhznZ0pNDsd1PgvyW_bG45zp6ve_Yz--fP5-c9c-fL29v_n00LpO9aX1HiV3MEklwaNWMCggIaQxnBuO2tA4gZeCSy5HKcw06n4wIyg0yvdGyh2737hTxIM9pXDE9NNGDPa8iGlvMZXgZrI0gaxImISiblA1B-n9WLHjQIqjq6x3GyvmEmx2oZB7dHFZyBXLtRiGmuqOvd9EpxSfVsrFHuKaaiLZCqX7-nTXV5XYVC7FnBP5P6dxsC9t2a0tW9uy57YsVJPcTLmKlz2lv-j_uH4Bv--WSQ</recordid><startdate>20211027</startdate><enddate>20211027</enddate><creator>Meitei, Oinam Romesh</creator><creator>Gard, Bryan T.</creator><creator>Barron, George S.</creator><creator>Pappas, David P.</creator><creator>Economou, Sophia E.</creator><creator>Barnes, Edwin</creator><creator>Mayhall, Nicholas J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Partner Journals</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>OTOTI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4696-9362</orcidid><orcidid>https://orcid.org/0000-0001-5529-1675</orcidid><orcidid>https://orcid.org/0000-0002-1312-9781</orcidid><orcidid>https://orcid.org/0000-0002-2705-2383</orcidid><orcidid>https://orcid.org/0000-0002-1939-5589</orcidid><orcidid>https://orcid.org/0000000219395589</orcidid><orcidid>https://orcid.org/0000000227052383</orcidid><orcidid>https://orcid.org/0000000346969362</orcidid><orcidid>https://orcid.org/0000000155291675</orcidid><orcidid>https://orcid.org/0000000213129781</orcidid></search><sort><creationdate>20211027</creationdate><title>Gate-free state preparation for fast variational quantum eigensolver simulations</title><author>Meitei, Oinam Romesh ; Gard, Bryan T. ; Barron, George S. ; Pappas, David P. ; Economou, Sophia E. ; Barnes, Edwin ; Mayhall, Nicholas J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-ffa31c0d3530fa850750e223991191a89ebd0f321313b329db8679b05a95f6933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/638/563</topic><topic>639/638/563/758</topic><topic>639/766/259</topic><topic>639/766/483/481</topic><topic>Algorithms</topic><topic>Classical and Quantum Gravitation</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>computation</topic><topic>Computers</topic><topic>information theory</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>quantum chemistry</topic><topic>Quantum Computing</topic><topic>Quantum Field Theories</topic><topic>quantum information</topic><topic>Quantum Information Technology</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Spintronics</topic><topic>String Theory</topic><topic>theoretical chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meitei, Oinam Romesh</creatorcontrib><creatorcontrib>Gard, Bryan T.</creatorcontrib><creatorcontrib>Barron, George S.</creatorcontrib><creatorcontrib>Pappas, David P.</creatorcontrib><creatorcontrib>Economou, Sophia E.</creatorcontrib><creatorcontrib>Barnes, Edwin</creatorcontrib><creatorcontrib>Mayhall, Nicholas J.</creatorcontrib><creatorcontrib>Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA (United States)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>OSTI.GOV</collection><collection>Directory of Open Access Journals</collection><jtitle>npj quantum information</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meitei, Oinam Romesh</au><au>Gard, Bryan T.</au><au>Barron, George S.</au><au>Pappas, David P.</au><au>Economou, Sophia E.</au><au>Barnes, Edwin</au><au>Mayhall, Nicholas J.</au><aucorp>Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gate-free state preparation for fast variational quantum eigensolver simulations</atitle><jtitle>npj quantum information</jtitle><stitle>npj Quantum Inf</stitle><date>2021-10-27</date><risdate>2021</risdate><volume>7</volume><issue>1</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><artnum>155</artnum><issn>2056-6387</issn><eissn>2056-6387</eissn><abstract>The variational quantum eigensolver is currently the flagship algorithm for solving electronic structure problems on near-term quantum computers. The algorithm involves implementing a sequence of parameterized gates on quantum hardware to generate a target quantum state, and then measuring the molecular energy. Due to finite coherence times and gate errors, the number of gates that can be implemented remains limited. In this work, we propose an alternative algorithm where device-level pulse shapes are variationally optimized for the state preparation rather than using an abstract-level quantum circuit. In doing so, the coherence time required for the state preparation is drastically reduced. We numerically demonstrate this by directly optimizing pulse shapes which accurately model the dissociation of H
2
and HeH
+
, and we compute the ground state energy for LiH with four transmons where we see reductions in state preparation times of roughly three orders of magnitude compared to gate-based strategies.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41534-021-00493-0</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4696-9362</orcidid><orcidid>https://orcid.org/0000-0001-5529-1675</orcidid><orcidid>https://orcid.org/0000-0002-1312-9781</orcidid><orcidid>https://orcid.org/0000-0002-2705-2383</orcidid><orcidid>https://orcid.org/0000-0002-1939-5589</orcidid><orcidid>https://orcid.org/0000000219395589</orcidid><orcidid>https://orcid.org/0000000227052383</orcidid><orcidid>https://orcid.org/0000000346969362</orcidid><orcidid>https://orcid.org/0000000155291675</orcidid><orcidid>https://orcid.org/0000000213129781</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2056-6387 |
ispartof | npj quantum information, 2021-10, Vol.7 (1), p.1-11, Article 155 |
issn | 2056-6387 2056-6387 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ed031a80d25e4753873ffb3b3b7e51ac |
source | Publicly Available Content (ProQuest); Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/638/563 639/638/563/758 639/766/259 639/766/483/481 Algorithms Classical and Quantum Gravitation CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS computation Computers information theory Physics Physics and Astronomy quantum chemistry Quantum Computing Quantum Field Theories quantum information Quantum Information Technology Quantum Physics Relativity Theory Spintronics String Theory theoretical chemistry |
title | Gate-free state preparation for fast variational quantum eigensolver simulations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A39%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gate-free%20state%20preparation%20for%20fast%20variational%20quantum%20eigensolver%20simulations&rft.jtitle=npj%20quantum%20information&rft.au=Meitei,%20Oinam%20Romesh&rft.aucorp=Virginia%20Polytechnic%20Institute%20and%20State%20University%20(Virginia%20Tech),%20Blacksburg,%20VA%20(United%20States)&rft.date=2021-10-27&rft.volume=7&rft.issue=1&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.artnum=155&rft.issn=2056-6387&rft.eissn=2056-6387&rft_id=info:doi/10.1038/s41534-021-00493-0&rft_dat=%3Cproquest_doaj_%3E2586666846%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c456t-ffa31c0d3530fa850750e223991191a89ebd0f321313b329db8679b05a95f6933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2586666846&rft_id=info:pmid/&rfr_iscdi=true |