Loading…

Robust Regression with Density Power Divergence: Theory, Comparisons, and Data Analysis

Minimum density power divergence estimation provides a general framework for robust statistics, depending on a parameter α , which determines the robustness properties of the method. The usual estimation method is numerical minimization of the power divergence. The paper considers the special case o...

Full description

Saved in:
Bibliographic Details
Published in:Entropy (Basel, Switzerland) Switzerland), 2020-03, Vol.22 (4), p.399
Main Authors: Riani, Marco, Atkinson, Anthony C., Corbellini, Aldo, Perrotta, Domenico
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c418t-4bf26548a1df6362412b565e420a54284352212f5d85eb387c07cebf5ebea4ea3
cites cdi_FETCH-LOGICAL-c418t-4bf26548a1df6362412b565e420a54284352212f5d85eb387c07cebf5ebea4ea3
container_end_page
container_issue 4
container_start_page 399
container_title Entropy (Basel, Switzerland)
container_volume 22
creator Riani, Marco
Atkinson, Anthony C.
Corbellini, Aldo
Perrotta, Domenico
description Minimum density power divergence estimation provides a general framework for robust statistics, depending on a parameter α , which determines the robustness properties of the method. The usual estimation method is numerical minimization of the power divergence. The paper considers the special case of linear regression. We developed an alternative estimation procedure using the methods of S-estimation. The rho function so obtained is proportional to one minus a suitably scaled normal density raised to the power α . We used the theory of S-estimation to determine the asymptotic efficiency and breakdown point for this new form of S-estimation. Two sets of comparisons were made. In one, S power divergence is compared with other S-estimators using four distinct rho functions. Plots of efficiency against breakdown point show that the properties of S power divergence are close to those of Tukey’s biweight. The second set of comparisons is between S power divergence estimation and numerical minimization. Monitoring these two procedures in terms of breakdown point shows that the numerical minimization yields a procedure with larger robust residuals and a lower empirical breakdown point, thus providing an estimate of α leading to more efficient parameter estimates.
doi_str_mv 10.3390/e22040399
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ed1afc9e43194067803129c435ee43f0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ed1afc9e43194067803129c435ee43f0</doaj_id><sourcerecordid>2468337598</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-4bf26548a1df6362412b565e420a54284352212f5d85eb387c07cebf5ebea4ea3</originalsourceid><addsrcrecordid>eNpVkU9PGzEQxa2qVaHQQ7-Bj61Eiv-v3UMllBSKhFSEqHq0Zr2zidHGTu0NKN-ebYMQnGbmzdPvHR4hnzj7KqVjpygEU0w694YccubcTEnG3r7YD8iHWu8YE1Jw854cSCms4Y08JH9ucrutI73BZcFaY070IY4rusBU47ij1_kBC13EeyxLTAG_0dsV5rI7ofO83kCJNad6QiF1dAEj0LMEw67Gekze9TBU_Pg0j8jv8x-385-zq18Xl_Ozq1lQ3I4z1fbCaGWBd72RRiguWm00KsFAK2GV1EJw0evOamylbQJrArb9dCAoBHlELvfcLsOd35S4hrLzGaL_L-Sy9FDGGAb02HHog0MluVPMNJZJLlyYInDSejaxvu9Zm227xi5gGgsMr6CvPymu_DLf-0ZzYxszAT4_AUr-u8U6-nWsAYcBEuZt9UIZK2WjnZ2sX_bWUHKtBfvnGM78v1L9c6nyEYmakjM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2468337598</pqid></control><display><type>article</type><title>Robust Regression with Density Power Divergence: Theory, Comparisons, and Data Analysis</title><source>PubMed Central (Open Access)</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>DOAJ Directory of Open Access Journals</source><creator>Riani, Marco ; Atkinson, Anthony C. ; Corbellini, Aldo ; Perrotta, Domenico</creator><creatorcontrib>Riani, Marco ; Atkinson, Anthony C. ; Corbellini, Aldo ; Perrotta, Domenico</creatorcontrib><description>Minimum density power divergence estimation provides a general framework for robust statistics, depending on a parameter α , which determines the robustness properties of the method. The usual estimation method is numerical minimization of the power divergence. The paper considers the special case of linear regression. We developed an alternative estimation procedure using the methods of S-estimation. The rho function so obtained is proportional to one minus a suitably scaled normal density raised to the power α . We used the theory of S-estimation to determine the asymptotic efficiency and breakdown point for this new form of S-estimation. Two sets of comparisons were made. In one, S power divergence is compared with other S-estimators using four distinct rho functions. Plots of efficiency against breakdown point show that the properties of S power divergence are close to those of Tukey’s biweight. The second set of comparisons is between S power divergence estimation and numerical minimization. Monitoring these two procedures in terms of breakdown point shows that the numerical minimization yields a procedure with larger robust residuals and a lower empirical breakdown point, thus providing an estimate of α leading to more efficient parameter estimates.</description><identifier>ISSN: 1099-4300</identifier><identifier>EISSN: 1099-4300</identifier><identifier>DOI: 10.3390/e22040399</identifier><identifier>PMID: 33286173</identifier><language>eng</language><publisher>MDPI</publisher><subject>estimation of α ; monitoring ; numerical minimization ; S-estimation ; Tukey’s biweight</subject><ispartof>Entropy (Basel, Switzerland), 2020-03, Vol.22 (4), p.399</ispartof><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-4bf26548a1df6362412b565e420a54284352212f5d85eb387c07cebf5ebea4ea3</citedby><cites>FETCH-LOGICAL-c418t-4bf26548a1df6362412b565e420a54284352212f5d85eb387c07cebf5ebea4ea3</cites><orcidid>0000-0002-0987-3823 ; 0000-0001-7886-2207 ; 0000-0002-6936-7295 ; 0000-0001-7937-9225</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516876/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516876/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,27924,27925,37013,53791,53793</link.rule.ids></links><search><creatorcontrib>Riani, Marco</creatorcontrib><creatorcontrib>Atkinson, Anthony C.</creatorcontrib><creatorcontrib>Corbellini, Aldo</creatorcontrib><creatorcontrib>Perrotta, Domenico</creatorcontrib><title>Robust Regression with Density Power Divergence: Theory, Comparisons, and Data Analysis</title><title>Entropy (Basel, Switzerland)</title><description>Minimum density power divergence estimation provides a general framework for robust statistics, depending on a parameter α , which determines the robustness properties of the method. The usual estimation method is numerical minimization of the power divergence. The paper considers the special case of linear regression. We developed an alternative estimation procedure using the methods of S-estimation. The rho function so obtained is proportional to one minus a suitably scaled normal density raised to the power α . We used the theory of S-estimation to determine the asymptotic efficiency and breakdown point for this new form of S-estimation. Two sets of comparisons were made. In one, S power divergence is compared with other S-estimators using four distinct rho functions. Plots of efficiency against breakdown point show that the properties of S power divergence are close to those of Tukey’s biweight. The second set of comparisons is between S power divergence estimation and numerical minimization. Monitoring these two procedures in terms of breakdown point shows that the numerical minimization yields a procedure with larger robust residuals and a lower empirical breakdown point, thus providing an estimate of α leading to more efficient parameter estimates.</description><subject>estimation of α</subject><subject>monitoring</subject><subject>numerical minimization</subject><subject>S-estimation</subject><subject>Tukey’s biweight</subject><issn>1099-4300</issn><issn>1099-4300</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkU9PGzEQxa2qVaHQQ7-Bj61Eiv-v3UMllBSKhFSEqHq0Zr2zidHGTu0NKN-ebYMQnGbmzdPvHR4hnzj7KqVjpygEU0w694YccubcTEnG3r7YD8iHWu8YE1Jw854cSCms4Y08JH9ucrutI73BZcFaY070IY4rusBU47ij1_kBC13EeyxLTAG_0dsV5rI7ofO83kCJNad6QiF1dAEj0LMEw67Gekze9TBU_Pg0j8jv8x-385-zq18Xl_Ozq1lQ3I4z1fbCaGWBd72RRiguWm00KsFAK2GV1EJw0evOamylbQJrArb9dCAoBHlELvfcLsOd35S4hrLzGaL_L-Sy9FDGGAb02HHog0MluVPMNJZJLlyYInDSejaxvu9Zm227xi5gGgsMr6CvPymu_DLf-0ZzYxszAT4_AUr-u8U6-nWsAYcBEuZt9UIZK2WjnZ2sX_bWUHKtBfvnGM78v1L9c6nyEYmakjM</recordid><startdate>20200331</startdate><enddate>20200331</enddate><creator>Riani, Marco</creator><creator>Atkinson, Anthony C.</creator><creator>Corbellini, Aldo</creator><creator>Perrotta, Domenico</creator><general>MDPI</general><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0987-3823</orcidid><orcidid>https://orcid.org/0000-0001-7886-2207</orcidid><orcidid>https://orcid.org/0000-0002-6936-7295</orcidid><orcidid>https://orcid.org/0000-0001-7937-9225</orcidid></search><sort><creationdate>20200331</creationdate><title>Robust Regression with Density Power Divergence: Theory, Comparisons, and Data Analysis</title><author>Riani, Marco ; Atkinson, Anthony C. ; Corbellini, Aldo ; Perrotta, Domenico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-4bf26548a1df6362412b565e420a54284352212f5d85eb387c07cebf5ebea4ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>estimation of α</topic><topic>monitoring</topic><topic>numerical minimization</topic><topic>S-estimation</topic><topic>Tukey’s biweight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Riani, Marco</creatorcontrib><creatorcontrib>Atkinson, Anthony C.</creatorcontrib><creatorcontrib>Corbellini, Aldo</creatorcontrib><creatorcontrib>Perrotta, Domenico</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Entropy (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Riani, Marco</au><au>Atkinson, Anthony C.</au><au>Corbellini, Aldo</au><au>Perrotta, Domenico</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Regression with Density Power Divergence: Theory, Comparisons, and Data Analysis</atitle><jtitle>Entropy (Basel, Switzerland)</jtitle><date>2020-03-31</date><risdate>2020</risdate><volume>22</volume><issue>4</issue><spage>399</spage><pages>399-</pages><issn>1099-4300</issn><eissn>1099-4300</eissn><abstract>Minimum density power divergence estimation provides a general framework for robust statistics, depending on a parameter α , which determines the robustness properties of the method. The usual estimation method is numerical minimization of the power divergence. The paper considers the special case of linear regression. We developed an alternative estimation procedure using the methods of S-estimation. The rho function so obtained is proportional to one minus a suitably scaled normal density raised to the power α . We used the theory of S-estimation to determine the asymptotic efficiency and breakdown point for this new form of S-estimation. Two sets of comparisons were made. In one, S power divergence is compared with other S-estimators using four distinct rho functions. Plots of efficiency against breakdown point show that the properties of S power divergence are close to those of Tukey’s biweight. The second set of comparisons is between S power divergence estimation and numerical minimization. Monitoring these two procedures in terms of breakdown point shows that the numerical minimization yields a procedure with larger robust residuals and a lower empirical breakdown point, thus providing an estimate of α leading to more efficient parameter estimates.</abstract><pub>MDPI</pub><pmid>33286173</pmid><doi>10.3390/e22040399</doi><orcidid>https://orcid.org/0000-0002-0987-3823</orcidid><orcidid>https://orcid.org/0000-0001-7886-2207</orcidid><orcidid>https://orcid.org/0000-0002-6936-7295</orcidid><orcidid>https://orcid.org/0000-0001-7937-9225</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1099-4300
ispartof Entropy (Basel, Switzerland), 2020-03, Vol.22 (4), p.399
issn 1099-4300
1099-4300
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ed1afc9e43194067803129c435ee43f0
source PubMed Central (Open Access); Publicly Available Content Database (Proquest) (PQ_SDU_P3); DOAJ Directory of Open Access Journals
subjects estimation of α
monitoring
numerical minimization
S-estimation
Tukey’s biweight
title Robust Regression with Density Power Divergence: Theory, Comparisons, and Data Analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A49%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Regression%20with%20Density%20Power%20Divergence:%20Theory,%20Comparisons,%20and%20Data%20Analysis&rft.jtitle=Entropy%20(Basel,%20Switzerland)&rft.au=Riani,%20Marco&rft.date=2020-03-31&rft.volume=22&rft.issue=4&rft.spage=399&rft.pages=399-&rft.issn=1099-4300&rft.eissn=1099-4300&rft_id=info:doi/10.3390/e22040399&rft_dat=%3Cproquest_doaj_%3E2468337598%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c418t-4bf26548a1df6362412b565e420a54284352212f5d85eb387c07cebf5ebea4ea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2468337598&rft_id=info:pmid/33286173&rfr_iscdi=true