Loading…
Robust Regression with Density Power Divergence: Theory, Comparisons, and Data Analysis
Minimum density power divergence estimation provides a general framework for robust statistics, depending on a parameter α , which determines the robustness properties of the method. The usual estimation method is numerical minimization of the power divergence. The paper considers the special case o...
Saved in:
Published in: | Entropy (Basel, Switzerland) Switzerland), 2020-03, Vol.22 (4), p.399 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c418t-4bf26548a1df6362412b565e420a54284352212f5d85eb387c07cebf5ebea4ea3 |
---|---|
cites | cdi_FETCH-LOGICAL-c418t-4bf26548a1df6362412b565e420a54284352212f5d85eb387c07cebf5ebea4ea3 |
container_end_page | |
container_issue | 4 |
container_start_page | 399 |
container_title | Entropy (Basel, Switzerland) |
container_volume | 22 |
creator | Riani, Marco Atkinson, Anthony C. Corbellini, Aldo Perrotta, Domenico |
description | Minimum density power divergence estimation provides a general framework for robust statistics, depending on a parameter α , which determines the robustness properties of the method. The usual estimation method is numerical minimization of the power divergence. The paper considers the special case of linear regression. We developed an alternative estimation procedure using the methods of S-estimation. The rho function so obtained is proportional to one minus a suitably scaled normal density raised to the power α . We used the theory of S-estimation to determine the asymptotic efficiency and breakdown point for this new form of S-estimation. Two sets of comparisons were made. In one, S power divergence is compared with other S-estimators using four distinct rho functions. Plots of efficiency against breakdown point show that the properties of S power divergence are close to those of Tukey’s biweight. The second set of comparisons is between S power divergence estimation and numerical minimization. Monitoring these two procedures in terms of breakdown point shows that the numerical minimization yields a procedure with larger robust residuals and a lower empirical breakdown point, thus providing an estimate of α leading to more efficient parameter estimates. |
doi_str_mv | 10.3390/e22040399 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ed1afc9e43194067803129c435ee43f0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ed1afc9e43194067803129c435ee43f0</doaj_id><sourcerecordid>2468337598</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-4bf26548a1df6362412b565e420a54284352212f5d85eb387c07cebf5ebea4ea3</originalsourceid><addsrcrecordid>eNpVkU9PGzEQxa2qVaHQQ7-Bj61Eiv-v3UMllBSKhFSEqHq0Zr2zidHGTu0NKN-ebYMQnGbmzdPvHR4hnzj7KqVjpygEU0w694YccubcTEnG3r7YD8iHWu8YE1Jw854cSCms4Y08JH9ucrutI73BZcFaY070IY4rusBU47ij1_kBC13EeyxLTAG_0dsV5rI7ofO83kCJNad6QiF1dAEj0LMEw67Gekze9TBU_Pg0j8jv8x-385-zq18Xl_Ozq1lQ3I4z1fbCaGWBd72RRiguWm00KsFAK2GV1EJw0evOamylbQJrArb9dCAoBHlELvfcLsOd35S4hrLzGaL_L-Sy9FDGGAb02HHog0MluVPMNJZJLlyYInDSejaxvu9Zm227xi5gGgsMr6CvPymu_DLf-0ZzYxszAT4_AUr-u8U6-nWsAYcBEuZt9UIZK2WjnZ2sX_bWUHKtBfvnGM78v1L9c6nyEYmakjM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2468337598</pqid></control><display><type>article</type><title>Robust Regression with Density Power Divergence: Theory, Comparisons, and Data Analysis</title><source>PubMed Central (Open Access)</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>DOAJ Directory of Open Access Journals</source><creator>Riani, Marco ; Atkinson, Anthony C. ; Corbellini, Aldo ; Perrotta, Domenico</creator><creatorcontrib>Riani, Marco ; Atkinson, Anthony C. ; Corbellini, Aldo ; Perrotta, Domenico</creatorcontrib><description>Minimum density power divergence estimation provides a general framework for robust statistics, depending on a parameter α , which determines the robustness properties of the method. The usual estimation method is numerical minimization of the power divergence. The paper considers the special case of linear regression. We developed an alternative estimation procedure using the methods of S-estimation. The rho function so obtained is proportional to one minus a suitably scaled normal density raised to the power α . We used the theory of S-estimation to determine the asymptotic efficiency and breakdown point for this new form of S-estimation. Two sets of comparisons were made. In one, S power divergence is compared with other S-estimators using four distinct rho functions. Plots of efficiency against breakdown point show that the properties of S power divergence are close to those of Tukey’s biweight. The second set of comparisons is between S power divergence estimation and numerical minimization. Monitoring these two procedures in terms of breakdown point shows that the numerical minimization yields a procedure with larger robust residuals and a lower empirical breakdown point, thus providing an estimate of α leading to more efficient parameter estimates.</description><identifier>ISSN: 1099-4300</identifier><identifier>EISSN: 1099-4300</identifier><identifier>DOI: 10.3390/e22040399</identifier><identifier>PMID: 33286173</identifier><language>eng</language><publisher>MDPI</publisher><subject>estimation of α ; monitoring ; numerical minimization ; S-estimation ; Tukey’s biweight</subject><ispartof>Entropy (Basel, Switzerland), 2020-03, Vol.22 (4), p.399</ispartof><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-4bf26548a1df6362412b565e420a54284352212f5d85eb387c07cebf5ebea4ea3</citedby><cites>FETCH-LOGICAL-c418t-4bf26548a1df6362412b565e420a54284352212f5d85eb387c07cebf5ebea4ea3</cites><orcidid>0000-0002-0987-3823 ; 0000-0001-7886-2207 ; 0000-0002-6936-7295 ; 0000-0001-7937-9225</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516876/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516876/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,27924,27925,37013,53791,53793</link.rule.ids></links><search><creatorcontrib>Riani, Marco</creatorcontrib><creatorcontrib>Atkinson, Anthony C.</creatorcontrib><creatorcontrib>Corbellini, Aldo</creatorcontrib><creatorcontrib>Perrotta, Domenico</creatorcontrib><title>Robust Regression with Density Power Divergence: Theory, Comparisons, and Data Analysis</title><title>Entropy (Basel, Switzerland)</title><description>Minimum density power divergence estimation provides a general framework for robust statistics, depending on a parameter α , which determines the robustness properties of the method. The usual estimation method is numerical minimization of the power divergence. The paper considers the special case of linear regression. We developed an alternative estimation procedure using the methods of S-estimation. The rho function so obtained is proportional to one minus a suitably scaled normal density raised to the power α . We used the theory of S-estimation to determine the asymptotic efficiency and breakdown point for this new form of S-estimation. Two sets of comparisons were made. In one, S power divergence is compared with other S-estimators using four distinct rho functions. Plots of efficiency against breakdown point show that the properties of S power divergence are close to those of Tukey’s biweight. The second set of comparisons is between S power divergence estimation and numerical minimization. Monitoring these two procedures in terms of breakdown point shows that the numerical minimization yields a procedure with larger robust residuals and a lower empirical breakdown point, thus providing an estimate of α leading to more efficient parameter estimates.</description><subject>estimation of α</subject><subject>monitoring</subject><subject>numerical minimization</subject><subject>S-estimation</subject><subject>Tukey’s biweight</subject><issn>1099-4300</issn><issn>1099-4300</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkU9PGzEQxa2qVaHQQ7-Bj61Eiv-v3UMllBSKhFSEqHq0Zr2zidHGTu0NKN-ebYMQnGbmzdPvHR4hnzj7KqVjpygEU0w694YccubcTEnG3r7YD8iHWu8YE1Jw854cSCms4Y08JH9ucrutI73BZcFaY070IY4rusBU47ij1_kBC13EeyxLTAG_0dsV5rI7ofO83kCJNad6QiF1dAEj0LMEw67Gekze9TBU_Pg0j8jv8x-385-zq18Xl_Ozq1lQ3I4z1fbCaGWBd72RRiguWm00KsFAK2GV1EJw0evOamylbQJrArb9dCAoBHlELvfcLsOd35S4hrLzGaL_L-Sy9FDGGAb02HHog0MluVPMNJZJLlyYInDSejaxvu9Zm227xi5gGgsMr6CvPymu_DLf-0ZzYxszAT4_AUr-u8U6-nWsAYcBEuZt9UIZK2WjnZ2sX_bWUHKtBfvnGM78v1L9c6nyEYmakjM</recordid><startdate>20200331</startdate><enddate>20200331</enddate><creator>Riani, Marco</creator><creator>Atkinson, Anthony C.</creator><creator>Corbellini, Aldo</creator><creator>Perrotta, Domenico</creator><general>MDPI</general><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0987-3823</orcidid><orcidid>https://orcid.org/0000-0001-7886-2207</orcidid><orcidid>https://orcid.org/0000-0002-6936-7295</orcidid><orcidid>https://orcid.org/0000-0001-7937-9225</orcidid></search><sort><creationdate>20200331</creationdate><title>Robust Regression with Density Power Divergence: Theory, Comparisons, and Data Analysis</title><author>Riani, Marco ; Atkinson, Anthony C. ; Corbellini, Aldo ; Perrotta, Domenico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-4bf26548a1df6362412b565e420a54284352212f5d85eb387c07cebf5ebea4ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>estimation of α</topic><topic>monitoring</topic><topic>numerical minimization</topic><topic>S-estimation</topic><topic>Tukey’s biweight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Riani, Marco</creatorcontrib><creatorcontrib>Atkinson, Anthony C.</creatorcontrib><creatorcontrib>Corbellini, Aldo</creatorcontrib><creatorcontrib>Perrotta, Domenico</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Entropy (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Riani, Marco</au><au>Atkinson, Anthony C.</au><au>Corbellini, Aldo</au><au>Perrotta, Domenico</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Regression with Density Power Divergence: Theory, Comparisons, and Data Analysis</atitle><jtitle>Entropy (Basel, Switzerland)</jtitle><date>2020-03-31</date><risdate>2020</risdate><volume>22</volume><issue>4</issue><spage>399</spage><pages>399-</pages><issn>1099-4300</issn><eissn>1099-4300</eissn><abstract>Minimum density power divergence estimation provides a general framework for robust statistics, depending on a parameter α , which determines the robustness properties of the method. The usual estimation method is numerical minimization of the power divergence. The paper considers the special case of linear regression. We developed an alternative estimation procedure using the methods of S-estimation. The rho function so obtained is proportional to one minus a suitably scaled normal density raised to the power α . We used the theory of S-estimation to determine the asymptotic efficiency and breakdown point for this new form of S-estimation. Two sets of comparisons were made. In one, S power divergence is compared with other S-estimators using four distinct rho functions. Plots of efficiency against breakdown point show that the properties of S power divergence are close to those of Tukey’s biweight. The second set of comparisons is between S power divergence estimation and numerical minimization. Monitoring these two procedures in terms of breakdown point shows that the numerical minimization yields a procedure with larger robust residuals and a lower empirical breakdown point, thus providing an estimate of α leading to more efficient parameter estimates.</abstract><pub>MDPI</pub><pmid>33286173</pmid><doi>10.3390/e22040399</doi><orcidid>https://orcid.org/0000-0002-0987-3823</orcidid><orcidid>https://orcid.org/0000-0001-7886-2207</orcidid><orcidid>https://orcid.org/0000-0002-6936-7295</orcidid><orcidid>https://orcid.org/0000-0001-7937-9225</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1099-4300 |
ispartof | Entropy (Basel, Switzerland), 2020-03, Vol.22 (4), p.399 |
issn | 1099-4300 1099-4300 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ed1afc9e43194067803129c435ee43f0 |
source | PubMed Central (Open Access); Publicly Available Content Database (Proquest) (PQ_SDU_P3); DOAJ Directory of Open Access Journals |
subjects | estimation of α monitoring numerical minimization S-estimation Tukey’s biweight |
title | Robust Regression with Density Power Divergence: Theory, Comparisons, and Data Analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A49%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Regression%20with%20Density%20Power%20Divergence:%20Theory,%20Comparisons,%20and%20Data%20Analysis&rft.jtitle=Entropy%20(Basel,%20Switzerland)&rft.au=Riani,%20Marco&rft.date=2020-03-31&rft.volume=22&rft.issue=4&rft.spage=399&rft.pages=399-&rft.issn=1099-4300&rft.eissn=1099-4300&rft_id=info:doi/10.3390/e22040399&rft_dat=%3Cproquest_doaj_%3E2468337598%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c418t-4bf26548a1df6362412b565e420a54284352212f5d85eb387c07cebf5ebea4ea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2468337598&rft_id=info:pmid/33286173&rfr_iscdi=true |