Loading…
HEROIC: a platform for remote collection of electroencephalographic data using consumer-grade brain wearables
The growing number of portable consumer-grade electroencephalography (EEG) wearables offers potential to track brain activity and neurological disease in real-world environments. However, accompanying open software tools to standardize custom recordings and help guide independent operation by users...
Saved in:
Published in: | BMC bioinformatics 2024-07, Vol.25 (1), p.243-10, Article 243 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c479t-150c8959d8e7b22c385640f27ce2db5799bc72f5506e77ee112701412f11df3c3 |
container_end_page | 10 |
container_issue | 1 |
container_start_page | 243 |
container_title | BMC bioinformatics |
container_volume | 25 |
creator | Sugden, Richard James Campbell, Ingrid Pham-Kim-Nghiem-Phu, Viet-Linh Luke Higazy, Randa Dent, Eliza Edelstein, Kim Leon, Alberto Diamandis, Phedias |
description | The growing number of portable consumer-grade electroencephalography (EEG) wearables offers potential to track brain activity and neurological disease in real-world environments. However, accompanying open software tools to standardize custom recordings and help guide independent operation by users is lacking. To address this gap, we developed HEROIC, an open-source software that allows participants to remotely collect advanced EEG data without the aid of an expert technician. The aim of HEROIC is to provide an open software platform that can be coupled with consumer grade wearables to record EEG data during customized neurocognitive tasks outside of traditional research environments. This article contains a description of HEROIC's implementation, how it can be used by researchers and a proof-of-concept demonstration highlighting the potential for HEROIC to be used as a scalable and low-cost EEG data collection tool. Specifically, we used HEROIC to guide healthy participants through standardized neurocognitive tasks and captured complex brain data including event-related potentials (ERPs) and powerband changes in participants' homes. Our results demonstrate HEROIC's capability to generate data precisely synchronized to presented stimuli, using a low-cost, remote protocol without reliance on an expert operator to administer sessions. Together, our software and its capabilities provide the first democratized and scalable platform for large-scale remote and longitudinal analysis of brain health and disease. |
doi_str_mv | 10.1186/s12859-024-05865-9 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ed373e0ff08b478f90590d5517e5e921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A801883417</galeid><doaj_id>oai_doaj_org_article_ed373e0ff08b478f90590d5517e5e921</doaj_id><sourcerecordid>A801883417</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-150c8959d8e7b22c385640f27ce2db5799bc72f5506e77ee112701412f11df3c3</originalsourceid><addsrcrecordid>eNptUk1v1DAQjRCIlsIf4IAscYFDiseJY5sLqlaFrlSpUoGz5TjjrKskXuyEj3-Pt1tKFyFL9mj83pvx-BXFS6CnALJ5l4BJrkrK6pJy2fBSPSqOoRZQMqD88YP4qHiW0g2lICTlT4ujSlHWAK-Oi_Hi_PpqvXpPDNkOZnYhjiRvJOIYZiQ2DAPa2YeJBEdwF8eAk8Xtxgyhj2a78ZZ0ZjZkSX7qM2FKy4ixzHcdkjYaP5EfaKJpB0zPiyfODAlf3J0nxdeP519WF-Xl1af16uyytLVQcwmcWqm46iSKljFbSd7U1DFhkXUtF0q1VjDHOW1QCEQAJijUwBxA5ypbnRTrvW4XzI3eRj-a-EsH4_VtIsRemzh7O6DGrhIVUueobGshnaJc0Y5zEMhRMchaH_Za26UdsbM4zdEMB6KHN5Pf6D5817mr3LYUWeHNnUIM3xZMsx59sjgMZsKwJF1RyRomoOYZ-vof6E1Y4pRnlVEKmKKU0b-o3uQX-MmFXNjuRPWZpCBlVcOu7Ol_UHl1OPr8T-h8zh8Q3h4QMmbGn3NvlpT0-vP1IZbtsTaGlCK6-4EA1Tt36r07dXanvnWnVpn06uEo7yl_7Fj9Bi0m3U4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3091290020</pqid></control><display><type>article</type><title>HEROIC: a platform for remote collection of electroencephalographic data using consumer-grade brain wearables</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Sugden, Richard James ; Campbell, Ingrid ; Pham-Kim-Nghiem-Phu, Viet-Linh Luke ; Higazy, Randa ; Dent, Eliza ; Edelstein, Kim ; Leon, Alberto ; Diamandis, Phedias</creator><creatorcontrib>Sugden, Richard James ; Campbell, Ingrid ; Pham-Kim-Nghiem-Phu, Viet-Linh Luke ; Higazy, Randa ; Dent, Eliza ; Edelstein, Kim ; Leon, Alberto ; Diamandis, Phedias</creatorcontrib><description>The growing number of portable consumer-grade electroencephalography (EEG) wearables offers potential to track brain activity and neurological disease in real-world environments. However, accompanying open software tools to standardize custom recordings and help guide independent operation by users is lacking. To address this gap, we developed HEROIC, an open-source software that allows participants to remotely collect advanced EEG data without the aid of an expert technician. The aim of HEROIC is to provide an open software platform that can be coupled with consumer grade wearables to record EEG data during customized neurocognitive tasks outside of traditional research environments. This article contains a description of HEROIC's implementation, how it can be used by researchers and a proof-of-concept demonstration highlighting the potential for HEROIC to be used as a scalable and low-cost EEG data collection tool. Specifically, we used HEROIC to guide healthy participants through standardized neurocognitive tasks and captured complex brain data including event-related potentials (ERPs) and powerband changes in participants' homes. Our results demonstrate HEROIC's capability to generate data precisely synchronized to presented stimuli, using a low-cost, remote protocol without reliance on an expert operator to administer sessions. Together, our software and its capabilities provide the first democratized and scalable platform for large-scale remote and longitudinal analysis of brain health and disease.</description><identifier>ISSN: 1471-2105</identifier><identifier>EISSN: 1471-2105</identifier><identifier>DOI: 10.1186/s12859-024-05865-9</identifier><identifier>PMID: 39026153</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Brain ; Brain - physiology ; Brain research ; Cognition ; Cost analysis ; Data collection ; Data entry ; Design ; EEG ; Electrodes ; Electroencephalography ; Electroencephalography - methods ; Event-related potentials ; Evoked Potentials - physiology ; Humans ; Longitudinal studies ; Low cost ; Male ; Marketing research ; Modularity ; Nervous system diseases ; Neurological diseases ; Open source software ; Public software ; Recording sessions ; Remote medicine ; Software ; Task complexity ; Wearable computers ; Wearable devices ; Wearable Electronic Devices</subject><ispartof>BMC bioinformatics, 2024-07, Vol.25 (1), p.243-10, Article 243</ispartof><rights>2024. The Author(s).</rights><rights>COPYRIGHT 2024 BioMed Central Ltd.</rights><rights>2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c479t-150c8959d8e7b22c385640f27ce2db5799bc72f5506e77ee112701412f11df3c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11256487/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3091290020?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39026153$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sugden, Richard James</creatorcontrib><creatorcontrib>Campbell, Ingrid</creatorcontrib><creatorcontrib>Pham-Kim-Nghiem-Phu, Viet-Linh Luke</creatorcontrib><creatorcontrib>Higazy, Randa</creatorcontrib><creatorcontrib>Dent, Eliza</creatorcontrib><creatorcontrib>Edelstein, Kim</creatorcontrib><creatorcontrib>Leon, Alberto</creatorcontrib><creatorcontrib>Diamandis, Phedias</creatorcontrib><title>HEROIC: a platform for remote collection of electroencephalographic data using consumer-grade brain wearables</title><title>BMC bioinformatics</title><addtitle>BMC Bioinformatics</addtitle><description>The growing number of portable consumer-grade electroencephalography (EEG) wearables offers potential to track brain activity and neurological disease in real-world environments. However, accompanying open software tools to standardize custom recordings and help guide independent operation by users is lacking. To address this gap, we developed HEROIC, an open-source software that allows participants to remotely collect advanced EEG data without the aid of an expert technician. The aim of HEROIC is to provide an open software platform that can be coupled with consumer grade wearables to record EEG data during customized neurocognitive tasks outside of traditional research environments. This article contains a description of HEROIC's implementation, how it can be used by researchers and a proof-of-concept demonstration highlighting the potential for HEROIC to be used as a scalable and low-cost EEG data collection tool. Specifically, we used HEROIC to guide healthy participants through standardized neurocognitive tasks and captured complex brain data including event-related potentials (ERPs) and powerband changes in participants' homes. Our results demonstrate HEROIC's capability to generate data precisely synchronized to presented stimuli, using a low-cost, remote protocol without reliance on an expert operator to administer sessions. Together, our software and its capabilities provide the first democratized and scalable platform for large-scale remote and longitudinal analysis of brain health and disease.</description><subject>Brain</subject><subject>Brain - physiology</subject><subject>Brain research</subject><subject>Cognition</subject><subject>Cost analysis</subject><subject>Data collection</subject><subject>Data entry</subject><subject>Design</subject><subject>EEG</subject><subject>Electrodes</subject><subject>Electroencephalography</subject><subject>Electroencephalography - methods</subject><subject>Event-related potentials</subject><subject>Evoked Potentials - physiology</subject><subject>Humans</subject><subject>Longitudinal studies</subject><subject>Low cost</subject><subject>Male</subject><subject>Marketing research</subject><subject>Modularity</subject><subject>Nervous system diseases</subject><subject>Neurological diseases</subject><subject>Open source software</subject><subject>Public software</subject><subject>Recording sessions</subject><subject>Remote medicine</subject><subject>Software</subject><subject>Task complexity</subject><subject>Wearable computers</subject><subject>Wearable devices</subject><subject>Wearable Electronic Devices</subject><issn>1471-2105</issn><issn>1471-2105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUk1v1DAQjRCIlsIf4IAscYFDiseJY5sLqlaFrlSpUoGz5TjjrKskXuyEj3-Pt1tKFyFL9mj83pvx-BXFS6CnALJ5l4BJrkrK6pJy2fBSPSqOoRZQMqD88YP4qHiW0g2lICTlT4ujSlHWAK-Oi_Hi_PpqvXpPDNkOZnYhjiRvJOIYZiQ2DAPa2YeJBEdwF8eAk8Xtxgyhj2a78ZZ0ZjZkSX7qM2FKy4ixzHcdkjYaP5EfaKJpB0zPiyfODAlf3J0nxdeP519WF-Xl1af16uyytLVQcwmcWqm46iSKljFbSd7U1DFhkXUtF0q1VjDHOW1QCEQAJijUwBxA5ypbnRTrvW4XzI3eRj-a-EsH4_VtIsRemzh7O6DGrhIVUueobGshnaJc0Y5zEMhRMchaH_Za26UdsbM4zdEMB6KHN5Pf6D5817mr3LYUWeHNnUIM3xZMsx59sjgMZsKwJF1RyRomoOYZ-vof6E1Y4pRnlVEKmKKU0b-o3uQX-MmFXNjuRPWZpCBlVcOu7Ol_UHl1OPr8T-h8zh8Q3h4QMmbGn3NvlpT0-vP1IZbtsTaGlCK6-4EA1Tt36r07dXanvnWnVpn06uEo7yl_7Fj9Bi0m3U4</recordid><startdate>20240718</startdate><enddate>20240718</enddate><creator>Sugden, Richard James</creator><creator>Campbell, Ingrid</creator><creator>Pham-Kim-Nghiem-Phu, Viet-Linh Luke</creator><creator>Higazy, Randa</creator><creator>Dent, Eliza</creator><creator>Edelstein, Kim</creator><creator>Leon, Alberto</creator><creator>Diamandis, Phedias</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7SC</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20240718</creationdate><title>HEROIC: a platform for remote collection of electroencephalographic data using consumer-grade brain wearables</title><author>Sugden, Richard James ; Campbell, Ingrid ; Pham-Kim-Nghiem-Phu, Viet-Linh Luke ; Higazy, Randa ; Dent, Eliza ; Edelstein, Kim ; Leon, Alberto ; Diamandis, Phedias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-150c8959d8e7b22c385640f27ce2db5799bc72f5506e77ee112701412f11df3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Brain</topic><topic>Brain - physiology</topic><topic>Brain research</topic><topic>Cognition</topic><topic>Cost analysis</topic><topic>Data collection</topic><topic>Data entry</topic><topic>Design</topic><topic>EEG</topic><topic>Electrodes</topic><topic>Electroencephalography</topic><topic>Electroencephalography - methods</topic><topic>Event-related potentials</topic><topic>Evoked Potentials - physiology</topic><topic>Humans</topic><topic>Longitudinal studies</topic><topic>Low cost</topic><topic>Male</topic><topic>Marketing research</topic><topic>Modularity</topic><topic>Nervous system diseases</topic><topic>Neurological diseases</topic><topic>Open source software</topic><topic>Public software</topic><topic>Recording sessions</topic><topic>Remote medicine</topic><topic>Software</topic><topic>Task complexity</topic><topic>Wearable computers</topic><topic>Wearable devices</topic><topic>Wearable Electronic Devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sugden, Richard James</creatorcontrib><creatorcontrib>Campbell, Ingrid</creatorcontrib><creatorcontrib>Pham-Kim-Nghiem-Phu, Viet-Linh Luke</creatorcontrib><creatorcontrib>Higazy, Randa</creatorcontrib><creatorcontrib>Dent, Eliza</creatorcontrib><creatorcontrib>Edelstein, Kim</creatorcontrib><creatorcontrib>Leon, Alberto</creatorcontrib><creatorcontrib>Diamandis, Phedias</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sugden, Richard James</au><au>Campbell, Ingrid</au><au>Pham-Kim-Nghiem-Phu, Viet-Linh Luke</au><au>Higazy, Randa</au><au>Dent, Eliza</au><au>Edelstein, Kim</au><au>Leon, Alberto</au><au>Diamandis, Phedias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HEROIC: a platform for remote collection of electroencephalographic data using consumer-grade brain wearables</atitle><jtitle>BMC bioinformatics</jtitle><addtitle>BMC Bioinformatics</addtitle><date>2024-07-18</date><risdate>2024</risdate><volume>25</volume><issue>1</issue><spage>243</spage><epage>10</epage><pages>243-10</pages><artnum>243</artnum><issn>1471-2105</issn><eissn>1471-2105</eissn><abstract>The growing number of portable consumer-grade electroencephalography (EEG) wearables offers potential to track brain activity and neurological disease in real-world environments. However, accompanying open software tools to standardize custom recordings and help guide independent operation by users is lacking. To address this gap, we developed HEROIC, an open-source software that allows participants to remotely collect advanced EEG data without the aid of an expert technician. The aim of HEROIC is to provide an open software platform that can be coupled with consumer grade wearables to record EEG data during customized neurocognitive tasks outside of traditional research environments. This article contains a description of HEROIC's implementation, how it can be used by researchers and a proof-of-concept demonstration highlighting the potential for HEROIC to be used as a scalable and low-cost EEG data collection tool. Specifically, we used HEROIC to guide healthy participants through standardized neurocognitive tasks and captured complex brain data including event-related potentials (ERPs) and powerband changes in participants' homes. Our results demonstrate HEROIC's capability to generate data precisely synchronized to presented stimuli, using a low-cost, remote protocol without reliance on an expert operator to administer sessions. Together, our software and its capabilities provide the first democratized and scalable platform for large-scale remote and longitudinal analysis of brain health and disease.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>39026153</pmid><doi>10.1186/s12859-024-05865-9</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-2105 |
ispartof | BMC bioinformatics, 2024-07, Vol.25 (1), p.243-10, Article 243 |
issn | 1471-2105 1471-2105 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ed373e0ff08b478f90590d5517e5e921 |
source | Publicly Available Content (ProQuest); PubMed Central |
subjects | Brain Brain - physiology Brain research Cognition Cost analysis Data collection Data entry Design EEG Electrodes Electroencephalography Electroencephalography - methods Event-related potentials Evoked Potentials - physiology Humans Longitudinal studies Low cost Male Marketing research Modularity Nervous system diseases Neurological diseases Open source software Public software Recording sessions Remote medicine Software Task complexity Wearable computers Wearable devices Wearable Electronic Devices |
title | HEROIC: a platform for remote collection of electroencephalographic data using consumer-grade brain wearables |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T06%3A35%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HEROIC:%20a%20platform%20for%20remote%20collection%20of%20electroencephalographic%20data%20using%20consumer-grade%20brain%20wearables&rft.jtitle=BMC%20bioinformatics&rft.au=Sugden,%20Richard%20James&rft.date=2024-07-18&rft.volume=25&rft.issue=1&rft.spage=243&rft.epage=10&rft.pages=243-10&rft.artnum=243&rft.issn=1471-2105&rft.eissn=1471-2105&rft_id=info:doi/10.1186/s12859-024-05865-9&rft_dat=%3Cgale_doaj_%3EA801883417%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c479t-150c8959d8e7b22c385640f27ce2db5799bc72f5506e77ee112701412f11df3c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3091290020&rft_id=info:pmid/39026153&rft_galeid=A801883417&rfr_iscdi=true |