Loading…

HEROIC: a platform for remote collection of electroencephalographic data using consumer-grade brain wearables

The growing number of portable consumer-grade electroencephalography (EEG) wearables offers potential to track brain activity and neurological disease in real-world environments. However, accompanying open software tools to standardize custom recordings and help guide independent operation by users...

Full description

Saved in:
Bibliographic Details
Published in:BMC bioinformatics 2024-07, Vol.25 (1), p.243-10, Article 243
Main Authors: Sugden, Richard James, Campbell, Ingrid, Pham-Kim-Nghiem-Phu, Viet-Linh Luke, Higazy, Randa, Dent, Eliza, Edelstein, Kim, Leon, Alberto, Diamandis, Phedias
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c479t-150c8959d8e7b22c385640f27ce2db5799bc72f5506e77ee112701412f11df3c3
container_end_page 10
container_issue 1
container_start_page 243
container_title BMC bioinformatics
container_volume 25
creator Sugden, Richard James
Campbell, Ingrid
Pham-Kim-Nghiem-Phu, Viet-Linh Luke
Higazy, Randa
Dent, Eliza
Edelstein, Kim
Leon, Alberto
Diamandis, Phedias
description The growing number of portable consumer-grade electroencephalography (EEG) wearables offers potential to track brain activity and neurological disease in real-world environments. However, accompanying open software tools to standardize custom recordings and help guide independent operation by users is lacking. To address this gap, we developed HEROIC, an open-source software that allows participants to remotely collect advanced EEG data without the aid of an expert technician. The aim of HEROIC is to provide an open software platform that can be coupled with consumer grade wearables to record EEG data during customized neurocognitive tasks outside of traditional research environments. This article contains a description of HEROIC's implementation, how it can be used by researchers and a proof-of-concept demonstration highlighting the potential for HEROIC to be used as a scalable and low-cost EEG data collection tool. Specifically, we used HEROIC to guide healthy participants through standardized neurocognitive tasks and captured complex brain data including event-related potentials (ERPs) and powerband changes in participants' homes. Our results demonstrate HEROIC's capability to generate data precisely synchronized to presented stimuli, using a low-cost, remote protocol without reliance on an expert operator to administer sessions. Together, our software and its capabilities provide the first democratized and scalable platform for large-scale remote and longitudinal analysis of brain health and disease.
doi_str_mv 10.1186/s12859-024-05865-9
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ed373e0ff08b478f90590d5517e5e921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A801883417</galeid><doaj_id>oai_doaj_org_article_ed373e0ff08b478f90590d5517e5e921</doaj_id><sourcerecordid>A801883417</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-150c8959d8e7b22c385640f27ce2db5799bc72f5506e77ee112701412f11df3c3</originalsourceid><addsrcrecordid>eNptUk1v1DAQjRCIlsIf4IAscYFDiseJY5sLqlaFrlSpUoGz5TjjrKskXuyEj3-Pt1tKFyFL9mj83pvx-BXFS6CnALJ5l4BJrkrK6pJy2fBSPSqOoRZQMqD88YP4qHiW0g2lICTlT4ujSlHWAK-Oi_Hi_PpqvXpPDNkOZnYhjiRvJOIYZiQ2DAPa2YeJBEdwF8eAk8Xtxgyhj2a78ZZ0ZjZkSX7qM2FKy4ixzHcdkjYaP5EfaKJpB0zPiyfODAlf3J0nxdeP519WF-Xl1af16uyytLVQcwmcWqm46iSKljFbSd7U1DFhkXUtF0q1VjDHOW1QCEQAJijUwBxA5ypbnRTrvW4XzI3eRj-a-EsH4_VtIsRemzh7O6DGrhIVUueobGshnaJc0Y5zEMhRMchaH_Za26UdsbM4zdEMB6KHN5Pf6D5817mr3LYUWeHNnUIM3xZMsx59sjgMZsKwJF1RyRomoOYZ-vof6E1Y4pRnlVEKmKKU0b-o3uQX-MmFXNjuRPWZpCBlVcOu7Ol_UHl1OPr8T-h8zh8Q3h4QMmbGn3NvlpT0-vP1IZbtsTaGlCK6-4EA1Tt36r07dXanvnWnVpn06uEo7yl_7Fj9Bi0m3U4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3091290020</pqid></control><display><type>article</type><title>HEROIC: a platform for remote collection of electroencephalographic data using consumer-grade brain wearables</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Sugden, Richard James ; Campbell, Ingrid ; Pham-Kim-Nghiem-Phu, Viet-Linh Luke ; Higazy, Randa ; Dent, Eliza ; Edelstein, Kim ; Leon, Alberto ; Diamandis, Phedias</creator><creatorcontrib>Sugden, Richard James ; Campbell, Ingrid ; Pham-Kim-Nghiem-Phu, Viet-Linh Luke ; Higazy, Randa ; Dent, Eliza ; Edelstein, Kim ; Leon, Alberto ; Diamandis, Phedias</creatorcontrib><description>The growing number of portable consumer-grade electroencephalography (EEG) wearables offers potential to track brain activity and neurological disease in real-world environments. However, accompanying open software tools to standardize custom recordings and help guide independent operation by users is lacking. To address this gap, we developed HEROIC, an open-source software that allows participants to remotely collect advanced EEG data without the aid of an expert technician. The aim of HEROIC is to provide an open software platform that can be coupled with consumer grade wearables to record EEG data during customized neurocognitive tasks outside of traditional research environments. This article contains a description of HEROIC's implementation, how it can be used by researchers and a proof-of-concept demonstration highlighting the potential for HEROIC to be used as a scalable and low-cost EEG data collection tool. Specifically, we used HEROIC to guide healthy participants through standardized neurocognitive tasks and captured complex brain data including event-related potentials (ERPs) and powerband changes in participants' homes. Our results demonstrate HEROIC's capability to generate data precisely synchronized to presented stimuli, using a low-cost, remote protocol without reliance on an expert operator to administer sessions. Together, our software and its capabilities provide the first democratized and scalable platform for large-scale remote and longitudinal analysis of brain health and disease.</description><identifier>ISSN: 1471-2105</identifier><identifier>EISSN: 1471-2105</identifier><identifier>DOI: 10.1186/s12859-024-05865-9</identifier><identifier>PMID: 39026153</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Brain ; Brain - physiology ; Brain research ; Cognition ; Cost analysis ; Data collection ; Data entry ; Design ; EEG ; Electrodes ; Electroencephalography ; Electroencephalography - methods ; Event-related potentials ; Evoked Potentials - physiology ; Humans ; Longitudinal studies ; Low cost ; Male ; Marketing research ; Modularity ; Nervous system diseases ; Neurological diseases ; Open source software ; Public software ; Recording sessions ; Remote medicine ; Software ; Task complexity ; Wearable computers ; Wearable devices ; Wearable Electronic Devices</subject><ispartof>BMC bioinformatics, 2024-07, Vol.25 (1), p.243-10, Article 243</ispartof><rights>2024. The Author(s).</rights><rights>COPYRIGHT 2024 BioMed Central Ltd.</rights><rights>2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c479t-150c8959d8e7b22c385640f27ce2db5799bc72f5506e77ee112701412f11df3c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11256487/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3091290020?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39026153$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sugden, Richard James</creatorcontrib><creatorcontrib>Campbell, Ingrid</creatorcontrib><creatorcontrib>Pham-Kim-Nghiem-Phu, Viet-Linh Luke</creatorcontrib><creatorcontrib>Higazy, Randa</creatorcontrib><creatorcontrib>Dent, Eliza</creatorcontrib><creatorcontrib>Edelstein, Kim</creatorcontrib><creatorcontrib>Leon, Alberto</creatorcontrib><creatorcontrib>Diamandis, Phedias</creatorcontrib><title>HEROIC: a platform for remote collection of electroencephalographic data using consumer-grade brain wearables</title><title>BMC bioinformatics</title><addtitle>BMC Bioinformatics</addtitle><description>The growing number of portable consumer-grade electroencephalography (EEG) wearables offers potential to track brain activity and neurological disease in real-world environments. However, accompanying open software tools to standardize custom recordings and help guide independent operation by users is lacking. To address this gap, we developed HEROIC, an open-source software that allows participants to remotely collect advanced EEG data without the aid of an expert technician. The aim of HEROIC is to provide an open software platform that can be coupled with consumer grade wearables to record EEG data during customized neurocognitive tasks outside of traditional research environments. This article contains a description of HEROIC's implementation, how it can be used by researchers and a proof-of-concept demonstration highlighting the potential for HEROIC to be used as a scalable and low-cost EEG data collection tool. Specifically, we used HEROIC to guide healthy participants through standardized neurocognitive tasks and captured complex brain data including event-related potentials (ERPs) and powerband changes in participants' homes. Our results demonstrate HEROIC's capability to generate data precisely synchronized to presented stimuli, using a low-cost, remote protocol without reliance on an expert operator to administer sessions. Together, our software and its capabilities provide the first democratized and scalable platform for large-scale remote and longitudinal analysis of brain health and disease.</description><subject>Brain</subject><subject>Brain - physiology</subject><subject>Brain research</subject><subject>Cognition</subject><subject>Cost analysis</subject><subject>Data collection</subject><subject>Data entry</subject><subject>Design</subject><subject>EEG</subject><subject>Electrodes</subject><subject>Electroencephalography</subject><subject>Electroencephalography - methods</subject><subject>Event-related potentials</subject><subject>Evoked Potentials - physiology</subject><subject>Humans</subject><subject>Longitudinal studies</subject><subject>Low cost</subject><subject>Male</subject><subject>Marketing research</subject><subject>Modularity</subject><subject>Nervous system diseases</subject><subject>Neurological diseases</subject><subject>Open source software</subject><subject>Public software</subject><subject>Recording sessions</subject><subject>Remote medicine</subject><subject>Software</subject><subject>Task complexity</subject><subject>Wearable computers</subject><subject>Wearable devices</subject><subject>Wearable Electronic Devices</subject><issn>1471-2105</issn><issn>1471-2105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUk1v1DAQjRCIlsIf4IAscYFDiseJY5sLqlaFrlSpUoGz5TjjrKskXuyEj3-Pt1tKFyFL9mj83pvx-BXFS6CnALJ5l4BJrkrK6pJy2fBSPSqOoRZQMqD88YP4qHiW0g2lICTlT4ujSlHWAK-Oi_Hi_PpqvXpPDNkOZnYhjiRvJOIYZiQ2DAPa2YeJBEdwF8eAk8Xtxgyhj2a78ZZ0ZjZkSX7qM2FKy4ixzHcdkjYaP5EfaKJpB0zPiyfODAlf3J0nxdeP519WF-Xl1af16uyytLVQcwmcWqm46iSKljFbSd7U1DFhkXUtF0q1VjDHOW1QCEQAJijUwBxA5ypbnRTrvW4XzI3eRj-a-EsH4_VtIsRemzh7O6DGrhIVUueobGshnaJc0Y5zEMhRMchaH_Za26UdsbM4zdEMB6KHN5Pf6D5817mr3LYUWeHNnUIM3xZMsx59sjgMZsKwJF1RyRomoOYZ-vof6E1Y4pRnlVEKmKKU0b-o3uQX-MmFXNjuRPWZpCBlVcOu7Ol_UHl1OPr8T-h8zh8Q3h4QMmbGn3NvlpT0-vP1IZbtsTaGlCK6-4EA1Tt36r07dXanvnWnVpn06uEo7yl_7Fj9Bi0m3U4</recordid><startdate>20240718</startdate><enddate>20240718</enddate><creator>Sugden, Richard James</creator><creator>Campbell, Ingrid</creator><creator>Pham-Kim-Nghiem-Phu, Viet-Linh Luke</creator><creator>Higazy, Randa</creator><creator>Dent, Eliza</creator><creator>Edelstein, Kim</creator><creator>Leon, Alberto</creator><creator>Diamandis, Phedias</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7SC</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20240718</creationdate><title>HEROIC: a platform for remote collection of electroencephalographic data using consumer-grade brain wearables</title><author>Sugden, Richard James ; Campbell, Ingrid ; Pham-Kim-Nghiem-Phu, Viet-Linh Luke ; Higazy, Randa ; Dent, Eliza ; Edelstein, Kim ; Leon, Alberto ; Diamandis, Phedias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-150c8959d8e7b22c385640f27ce2db5799bc72f5506e77ee112701412f11df3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Brain</topic><topic>Brain - physiology</topic><topic>Brain research</topic><topic>Cognition</topic><topic>Cost analysis</topic><topic>Data collection</topic><topic>Data entry</topic><topic>Design</topic><topic>EEG</topic><topic>Electrodes</topic><topic>Electroencephalography</topic><topic>Electroencephalography - methods</topic><topic>Event-related potentials</topic><topic>Evoked Potentials - physiology</topic><topic>Humans</topic><topic>Longitudinal studies</topic><topic>Low cost</topic><topic>Male</topic><topic>Marketing research</topic><topic>Modularity</topic><topic>Nervous system diseases</topic><topic>Neurological diseases</topic><topic>Open source software</topic><topic>Public software</topic><topic>Recording sessions</topic><topic>Remote medicine</topic><topic>Software</topic><topic>Task complexity</topic><topic>Wearable computers</topic><topic>Wearable devices</topic><topic>Wearable Electronic Devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sugden, Richard James</creatorcontrib><creatorcontrib>Campbell, Ingrid</creatorcontrib><creatorcontrib>Pham-Kim-Nghiem-Phu, Viet-Linh Luke</creatorcontrib><creatorcontrib>Higazy, Randa</creatorcontrib><creatorcontrib>Dent, Eliza</creatorcontrib><creatorcontrib>Edelstein, Kim</creatorcontrib><creatorcontrib>Leon, Alberto</creatorcontrib><creatorcontrib>Diamandis, Phedias</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sugden, Richard James</au><au>Campbell, Ingrid</au><au>Pham-Kim-Nghiem-Phu, Viet-Linh Luke</au><au>Higazy, Randa</au><au>Dent, Eliza</au><au>Edelstein, Kim</au><au>Leon, Alberto</au><au>Diamandis, Phedias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HEROIC: a platform for remote collection of electroencephalographic data using consumer-grade brain wearables</atitle><jtitle>BMC bioinformatics</jtitle><addtitle>BMC Bioinformatics</addtitle><date>2024-07-18</date><risdate>2024</risdate><volume>25</volume><issue>1</issue><spage>243</spage><epage>10</epage><pages>243-10</pages><artnum>243</artnum><issn>1471-2105</issn><eissn>1471-2105</eissn><abstract>The growing number of portable consumer-grade electroencephalography (EEG) wearables offers potential to track brain activity and neurological disease in real-world environments. However, accompanying open software tools to standardize custom recordings and help guide independent operation by users is lacking. To address this gap, we developed HEROIC, an open-source software that allows participants to remotely collect advanced EEG data without the aid of an expert technician. The aim of HEROIC is to provide an open software platform that can be coupled with consumer grade wearables to record EEG data during customized neurocognitive tasks outside of traditional research environments. This article contains a description of HEROIC's implementation, how it can be used by researchers and a proof-of-concept demonstration highlighting the potential for HEROIC to be used as a scalable and low-cost EEG data collection tool. Specifically, we used HEROIC to guide healthy participants through standardized neurocognitive tasks and captured complex brain data including event-related potentials (ERPs) and powerband changes in participants' homes. Our results demonstrate HEROIC's capability to generate data precisely synchronized to presented stimuli, using a low-cost, remote protocol without reliance on an expert operator to administer sessions. Together, our software and its capabilities provide the first democratized and scalable platform for large-scale remote and longitudinal analysis of brain health and disease.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>39026153</pmid><doi>10.1186/s12859-024-05865-9</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-2105
ispartof BMC bioinformatics, 2024-07, Vol.25 (1), p.243-10, Article 243
issn 1471-2105
1471-2105
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ed373e0ff08b478f90590d5517e5e921
source Publicly Available Content (ProQuest); PubMed Central
subjects Brain
Brain - physiology
Brain research
Cognition
Cost analysis
Data collection
Data entry
Design
EEG
Electrodes
Electroencephalography
Electroencephalography - methods
Event-related potentials
Evoked Potentials - physiology
Humans
Longitudinal studies
Low cost
Male
Marketing research
Modularity
Nervous system diseases
Neurological diseases
Open source software
Public software
Recording sessions
Remote medicine
Software
Task complexity
Wearable computers
Wearable devices
Wearable Electronic Devices
title HEROIC: a platform for remote collection of electroencephalographic data using consumer-grade brain wearables
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T06%3A35%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HEROIC:%20a%20platform%20for%20remote%20collection%20of%20electroencephalographic%20data%20using%20consumer-grade%20brain%20wearables&rft.jtitle=BMC%20bioinformatics&rft.au=Sugden,%20Richard%20James&rft.date=2024-07-18&rft.volume=25&rft.issue=1&rft.spage=243&rft.epage=10&rft.pages=243-10&rft.artnum=243&rft.issn=1471-2105&rft.eissn=1471-2105&rft_id=info:doi/10.1186/s12859-024-05865-9&rft_dat=%3Cgale_doaj_%3EA801883417%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c479t-150c8959d8e7b22c385640f27ce2db5799bc72f5506e77ee112701412f11df3c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3091290020&rft_id=info:pmid/39026153&rft_galeid=A801883417&rfr_iscdi=true