Loading…
About Modeling and Optimization of Solid Bowl Centrifuges
Many processes involve solid bowl centrifuges as a solid–liquid separation step, typically used for clarification, thickening, classification, degritting, mechanical dewatering, and screening. In order to operate solid bowl centrifuges safely, with minimum resource consumption and reduced setup time...
Saved in:
Published in: | KONA Powder and Particle Journal 2024/01/10, Vol.41, pp.58-77 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c508t-754f65e78bd98b70ca0e014d7d9b454b4883f21c1958d5522a8074d309b1c1943 |
container_end_page | 77 |
container_issue | |
container_start_page | 58 |
container_title | KONA Powder and Particle Journal |
container_volume | 41 |
creator | Gleiss, Marco Nirschl, Hermann |
description | Many processes involve solid bowl centrifuges as a solid–liquid separation step, typically used for clarification, thickening, classification, degritting, mechanical dewatering, and screening. In order to operate solid bowl centrifuges safely, with minimum resource consumption and reduced setup times, modeling and optimization are necessary steps. This is a challenge due to the complex process behavior, which can be overcome by developing advanced physical models and process analysis. This review provides an overview of solid bowl centrifuge applications, their modeling, and addresses future optimization potentials through digital tools. The impact of dispersed phase properties such as particle size, shape, surface roughness, structure, composition, and continuous liquid phase is the reason for the lack of generally applicable models. Laboratory-scale batch sedimentation centrifuges are used to predict material behavior and develop material functions describing separation-related properties such as sedimentation, sediment build-up and sediment transport. The combination of material functions and modeling allows accurate simulation of solid bowl centrifuges from laboratory to industrial scale. Since models usually do not cover all influencing variables, there are often deviations between predictions and the real process behavior. Gray-box modeling and on-line or in-situ process analytics are tools to improve centrifuge operation. |
doi_str_mv | 10.14356/kona.2024010 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ed40c5c963694b6288d93126310a803a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ed40c5c963694b6288d93126310a803a</doaj_id><sourcerecordid>2974585988</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-754f65e78bd98b70ca0e014d7d9b454b4883f21c1958d5522a8074d309b1c1943</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EElXpkXskzinrV2wf24pHpaIegLPlxE5xSOPipELw60mbUh_W0u7n2fEgdIthihnl2f1naMyUAGGA4QKNCJYi5ZyKSzQCImXKOGXXaNK2FRyOgEzSEVKzPOy75CVYV_tmk5jGJutd57f-13Q-NEkok9dQe5vMw3edLFzTRV_uN669QVelqVs3Od1j9P748LZ4Tlfrp-VitkoLDrJLBWdlxp2QuVUyF1AYcICZFVbljLOcSUlLggusuLScE2IkCGYpqPzQZHSMloOuDabSu-i3Jv7oYLw-NkLcaBM7X9ROO8ug4IXKaKZYnvW_topiklEMvSo1vdbdoLWL4Wvv2k5XYR-b3r4mSjAuuertjFE6UEUMbRtded6KQR_D1oew9Snsnp8PfNV2ZuPO9L-tI8ywhkM5PToPiw8TtWvoH5Gmhks</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2974585988</pqid></control><display><type>article</type><title>About Modeling and Optimization of Solid Bowl Centrifuges</title><source>Full-Text Journals in Chemistry (Open access)</source><creator>Gleiss, Marco ; Nirschl, Hermann</creator><creatorcontrib>Gleiss, Marco ; Nirschl, Hermann</creatorcontrib><description>Many processes involve solid bowl centrifuges as a solid–liquid separation step, typically used for clarification, thickening, classification, degritting, mechanical dewatering, and screening. In order to operate solid bowl centrifuges safely, with minimum resource consumption and reduced setup times, modeling and optimization are necessary steps. This is a challenge due to the complex process behavior, which can be overcome by developing advanced physical models and process analysis. This review provides an overview of solid bowl centrifuge applications, their modeling, and addresses future optimization potentials through digital tools. The impact of dispersed phase properties such as particle size, shape, surface roughness, structure, composition, and continuous liquid phase is the reason for the lack of generally applicable models. Laboratory-scale batch sedimentation centrifuges are used to predict material behavior and develop material functions describing separation-related properties such as sedimentation, sediment build-up and sediment transport. The combination of material functions and modeling allows accurate simulation of solid bowl centrifuges from laboratory to industrial scale. Since models usually do not cover all influencing variables, there are often deviations between predictions and the real process behavior. Gray-box modeling and on-line or in-situ process analytics are tools to improve centrifuge operation.</description><identifier>ISSN: 0288-4534</identifier><identifier>EISSN: 2187-5537</identifier><identifier>DOI: 10.14356/kona.2024010</identifier><language>eng</language><publisher>Hirakata-sh: Hosokawa Powder Technology Foundation</publisher><subject>Centrifuges ; Dewatering ; gray-box modeling ; Influence ; Laboratories ; Liquid phases ; material characterization ; Measurement techniques ; Modelling ; multiphase flow ; Optimization ; Particle size ; process analytics ; process modeling ; Reynolds number ; Sediment transport ; Sedimentation ; Separation ; solid bowl centrifuges ; Surface roughness ; Velocity</subject><ispartof>KONA Powder and Particle Journal, 2024/01/10, Vol.41, pp.58-77</ispartof><rights>2024 Hosokawa Powder Technology Foundation</rights><rights>Copyright Hosokawa Powder Technology Foundation 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c508t-754f65e78bd98b70ca0e014d7d9b454b4883f21c1958d5522a8074d309b1c1943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Gleiss, Marco</creatorcontrib><creatorcontrib>Nirschl, Hermann</creatorcontrib><title>About Modeling and Optimization of Solid Bowl Centrifuges</title><title>KONA Powder and Particle Journal</title><addtitle>KONA</addtitle><description>Many processes involve solid bowl centrifuges as a solid–liquid separation step, typically used for clarification, thickening, classification, degritting, mechanical dewatering, and screening. In order to operate solid bowl centrifuges safely, with minimum resource consumption and reduced setup times, modeling and optimization are necessary steps. This is a challenge due to the complex process behavior, which can be overcome by developing advanced physical models and process analysis. This review provides an overview of solid bowl centrifuge applications, their modeling, and addresses future optimization potentials through digital tools. The impact of dispersed phase properties such as particle size, shape, surface roughness, structure, composition, and continuous liquid phase is the reason for the lack of generally applicable models. Laboratory-scale batch sedimentation centrifuges are used to predict material behavior and develop material functions describing separation-related properties such as sedimentation, sediment build-up and sediment transport. The combination of material functions and modeling allows accurate simulation of solid bowl centrifuges from laboratory to industrial scale. Since models usually do not cover all influencing variables, there are often deviations between predictions and the real process behavior. Gray-box modeling and on-line or in-situ process analytics are tools to improve centrifuge operation.</description><subject>Centrifuges</subject><subject>Dewatering</subject><subject>gray-box modeling</subject><subject>Influence</subject><subject>Laboratories</subject><subject>Liquid phases</subject><subject>material characterization</subject><subject>Measurement techniques</subject><subject>Modelling</subject><subject>multiphase flow</subject><subject>Optimization</subject><subject>Particle size</subject><subject>process analytics</subject><subject>process modeling</subject><subject>Reynolds number</subject><subject>Sediment transport</subject><subject>Sedimentation</subject><subject>Separation</subject><subject>solid bowl centrifuges</subject><subject>Surface roughness</subject><subject>Velocity</subject><issn>0288-4534</issn><issn>2187-5537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNo9kEtPwzAQhC0EElXpkXskzinrV2wf24pHpaIegLPlxE5xSOPipELw60mbUh_W0u7n2fEgdIthihnl2f1naMyUAGGA4QKNCJYi5ZyKSzQCImXKOGXXaNK2FRyOgEzSEVKzPOy75CVYV_tmk5jGJutd57f-13Q-NEkok9dQe5vMw3edLFzTRV_uN669QVelqVs3Od1j9P748LZ4Tlfrp-VitkoLDrJLBWdlxp2QuVUyF1AYcICZFVbljLOcSUlLggusuLScE2IkCGYpqPzQZHSMloOuDabSu-i3Jv7oYLw-NkLcaBM7X9ROO8ug4IXKaKZYnvW_topiklEMvSo1vdbdoLWL4Wvv2k5XYR-b3r4mSjAuuertjFE6UEUMbRtded6KQR_D1oew9Snsnp8PfNV2ZuPO9L-tI8ywhkM5PToPiw8TtWvoH5Gmhks</recordid><startdate>20240110</startdate><enddate>20240110</enddate><creator>Gleiss, Marco</creator><creator>Nirschl, Hermann</creator><general>Hosokawa Powder Technology Foundation</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BVBZV</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20240110</creationdate><title>About Modeling and Optimization of Solid Bowl Centrifuges</title><author>Gleiss, Marco ; Nirschl, Hermann</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-754f65e78bd98b70ca0e014d7d9b454b4883f21c1958d5522a8074d309b1c1943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Centrifuges</topic><topic>Dewatering</topic><topic>gray-box modeling</topic><topic>Influence</topic><topic>Laboratories</topic><topic>Liquid phases</topic><topic>material characterization</topic><topic>Measurement techniques</topic><topic>Modelling</topic><topic>multiphase flow</topic><topic>Optimization</topic><topic>Particle size</topic><topic>process analytics</topic><topic>process modeling</topic><topic>Reynolds number</topic><topic>Sediment transport</topic><topic>Sedimentation</topic><topic>Separation</topic><topic>solid bowl centrifuges</topic><topic>Surface roughness</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gleiss, Marco</creatorcontrib><creatorcontrib>Nirschl, Hermann</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East & South Asia Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>KONA Powder and Particle Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gleiss, Marco</au><au>Nirschl, Hermann</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>About Modeling and Optimization of Solid Bowl Centrifuges</atitle><jtitle>KONA Powder and Particle Journal</jtitle><addtitle>KONA</addtitle><date>2024-01-10</date><risdate>2024</risdate><volume>41</volume><spage>58</spage><epage>77</epage><pages>58-77</pages><artnum>2024010</artnum><issn>0288-4534</issn><eissn>2187-5537</eissn><abstract>Many processes involve solid bowl centrifuges as a solid–liquid separation step, typically used for clarification, thickening, classification, degritting, mechanical dewatering, and screening. In order to operate solid bowl centrifuges safely, with minimum resource consumption and reduced setup times, modeling and optimization are necessary steps. This is a challenge due to the complex process behavior, which can be overcome by developing advanced physical models and process analysis. This review provides an overview of solid bowl centrifuge applications, their modeling, and addresses future optimization potentials through digital tools. The impact of dispersed phase properties such as particle size, shape, surface roughness, structure, composition, and continuous liquid phase is the reason for the lack of generally applicable models. Laboratory-scale batch sedimentation centrifuges are used to predict material behavior and develop material functions describing separation-related properties such as sedimentation, sediment build-up and sediment transport. The combination of material functions and modeling allows accurate simulation of solid bowl centrifuges from laboratory to industrial scale. Since models usually do not cover all influencing variables, there are often deviations between predictions and the real process behavior. Gray-box modeling and on-line or in-situ process analytics are tools to improve centrifuge operation.</abstract><cop>Hirakata-sh</cop><pub>Hosokawa Powder Technology Foundation</pub><doi>10.14356/kona.2024010</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0288-4534 |
ispartof | KONA Powder and Particle Journal, 2024/01/10, Vol.41, pp.58-77 |
issn | 0288-4534 2187-5537 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ed40c5c963694b6288d93126310a803a |
source | Full-Text Journals in Chemistry (Open access) |
subjects | Centrifuges Dewatering gray-box modeling Influence Laboratories Liquid phases material characterization Measurement techniques Modelling multiphase flow Optimization Particle size process analytics process modeling Reynolds number Sediment transport Sedimentation Separation solid bowl centrifuges Surface roughness Velocity |
title | About Modeling and Optimization of Solid Bowl Centrifuges |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T20%3A52%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=About%20Modeling%20and%20Optimization%20of%20Solid%20Bowl%20Centrifuges&rft.jtitle=KONA%20Powder%20and%20Particle%20Journal&rft.au=Gleiss,%20Marco&rft.date=2024-01-10&rft.volume=41&rft.spage=58&rft.epage=77&rft.pages=58-77&rft.artnum=2024010&rft.issn=0288-4534&rft.eissn=2187-5537&rft_id=info:doi/10.14356/kona.2024010&rft_dat=%3Cproquest_doaj_%3E2974585988%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c508t-754f65e78bd98b70ca0e014d7d9b454b4883f21c1958d5522a8074d309b1c1943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2974585988&rft_id=info:pmid/&rfr_iscdi=true |