Loading…

HSF1 is required for induction of mitochondrial chaperones during the mitochondrial unfolded protein response

The mitochondrial unfolded protein response (UPRmt) is characterized by the transcriptional induction of mitochondrial chaperone and protease genes in response to impaired mitochondrial proteostasis and is regulated by ATF5 and CHOP in mammalian cells. However, the detailed mechanisms underlying the...

Full description

Saved in:
Bibliographic Details
Published in:FEBS open bio 2020-06, Vol.10 (6), p.1135-1148
Main Authors: Katiyar, Arpit, Fujimoto, Mitsuaki, Tan, Ke, Kurashima, Ai, Srivastava, Pratibha, Okada, Mariko, Takii, Ryosuke, Nakai, Akira
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The mitochondrial unfolded protein response (UPRmt) is characterized by the transcriptional induction of mitochondrial chaperone and protease genes in response to impaired mitochondrial proteostasis and is regulated by ATF5 and CHOP in mammalian cells. However, the detailed mechanisms underlying the UPRmt are currently unclear. Here, we show that HSF1 is required for activation of mitochondrial chaperone genes, including HSP60, HSP10, and mtHSP70, in mouse embryonic fibroblasts during inhibition of matrix chaperone TRAP1, protease Lon, or electron transfer complex 1 activity. HSF1 bound constitutively to mitochondrial chaperone gene promoters, and we observed that its occupancy was remarkably enhanced at different levels during the UPRmt. Furthermore, HSF1 supported the maintenance of mitochondrial function under the same conditions. These results demonstrate that HSF1 is required for induction of mitochondrial chaperones during the UPRmt, and thus, it may be one of the guardians of mitochondrial function under conditions of impaired mitochondrial proteostasis. The mitochondrial unfolded protein response (UPRmt) is characterized by the transcriptional induction of mitochondrial chaperone and protease genes in response to impaired mitochondrial proteostasis. Here, we show that heat shock transcription factor (HSF1) is required for activation of mitochondrial chaperone genes and supports the maintenance of mitochondrial function in mouse cells during the UPRmt.
ISSN:2211-5463
2211-5463
DOI:10.1002/2211-5463.12863