Loading…

Information Spreading on Activity-Driven Temporal Networks with Two-Step Memory

Information spreading dynamics on the temporal network is a hot topic in the field of network science. In this paper, we propose an information spreading model on an activity-driven temporal network, in which a node is accepting the information dependents on the cumulatively received pieces of infor...

Full description

Saved in:
Bibliographic Details
Published in:Discrete dynamics in nature and society 2021, Vol.2021, p.1-7
Main Authors: Zhong, Linfeng, Xue, Xiaoyu, Bai, Yu, Huang, Jin, Cheng, Qing, Huang, Longyang, Pan, Weijun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c481t-238efcadf10f41affee84fd33edd4401e16ca7fa7a19e580026064fc9c99e3ab3
cites cdi_FETCH-LOGICAL-c481t-238efcadf10f41affee84fd33edd4401e16ca7fa7a19e580026064fc9c99e3ab3
container_end_page 7
container_issue
container_start_page 1
container_title Discrete dynamics in nature and society
container_volume 2021
creator Zhong, Linfeng
Xue, Xiaoyu
Bai, Yu
Huang, Jin
Cheng, Qing
Huang, Longyang
Pan, Weijun
description Information spreading dynamics on the temporal network is a hot topic in the field of network science. In this paper, we propose an information spreading model on an activity-driven temporal network, in which a node is accepting the information dependents on the cumulatively received pieces of information in its recent two steps. With a generalized Markovian approach, we analyzed the information spreading size, and revealed that network temporality might suppress or promote the information spreading, which is determined by the information transmission probability. Besides, the system exists a critical mass, below which the information cannot globally outbreak, and above which the information outbreak size does not change with the initial seed size. Our theory can qualitatively well predict the numerical simulations.
doi_str_mv 10.1155/2021/4506012
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ed6d21343d374793b23c704b61bf0764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A683537885</galeid><doaj_id>oai_doaj_org_article_ed6d21343d374793b23c704b61bf0764</doaj_id><sourcerecordid>A683537885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-238efcadf10f41affee84fd33edd4401e16ca7fa7a19e580026064fc9c99e3ab3</originalsourceid><addsrcrecordid>eNqNkU9P3DAQxaOqlUppb3yASD22Af-L7RxXFOhKUA5sJW7WrD1evN3EqWNY7bevIajHqvLBntHvPY3nVdUJJaeUtu0ZI4yeiZZIQtmb6ohKohqt1f3b8iZMNoQx-b76ME1bQhjRHTuqbpeDj6mHHOJQ340JwYVhU5diYXN4CvnQfEvhCYd6hf0YE-zqH5j3Mf2a6n3ID_VqH5u7jGN9g31Mh4_VOw-7CT-93sfVz8uL1fn35vr2anm-uG6s0DQ3jGv0FpynxAsK3iNq4R3n6JwQhCKVFpQHBbTDVpdxJZHC2852HXJY8-NqOfu6CFszptBDOpgIwbw0YtoYSDnYHRp00jHKBXdcCdXxNeNWEbGWdO2JkqJ4fZ69xhR_P-KUzTY-pqGMb5jQZZeSC1ao05naQDENZW05gS3HYR9sHNCH0l_ITiqmlKD_LdC85Urrtgi-zgKb4jQl9H__RYl5Dtg8B2xeAy74lxl_CIODffg3_QcklKOq</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480126342</pqid></control><display><type>article</type><title>Information Spreading on Activity-Driven Temporal Networks with Two-Step Memory</title><source>Wiley Online Library Journals Open Access</source><source>Publicly Available Content Database</source><creator>Zhong, Linfeng ; Xue, Xiaoyu ; Bai, Yu ; Huang, Jin ; Cheng, Qing ; Huang, Longyang ; Pan, Weijun</creator><contributor>Gan, Chenquan ; Chenquan Gan</contributor><creatorcontrib>Zhong, Linfeng ; Xue, Xiaoyu ; Bai, Yu ; Huang, Jin ; Cheng, Qing ; Huang, Longyang ; Pan, Weijun ; Gan, Chenquan ; Chenquan Gan</creatorcontrib><description>Information spreading dynamics on the temporal network is a hot topic in the field of network science. In this paper, we propose an information spreading model on an activity-driven temporal network, in which a node is accepting the information dependents on the cumulatively received pieces of information in its recent two steps. With a generalized Markovian approach, we analyzed the information spreading size, and revealed that network temporality might suppress or promote the information spreading, which is determined by the information transmission probability. Besides, the system exists a critical mass, below which the information cannot globally outbreak, and above which the information outbreak size does not change with the initial seed size. Our theory can qualitatively well predict the numerical simulations.</description><identifier>ISSN: 1026-0226</identifier><identifier>EISSN: 1607-887X</identifier><identifier>DOI: 10.1155/2021/4506012</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Critical mass ; Information management ; Mathematical models ; Network topologies ; Numerical analysis ; Numerical prediction ; Outbreaks ; Simulation ; Social networks</subject><ispartof>Discrete dynamics in nature and society, 2021, Vol.2021, p.1-7</ispartof><rights>Copyright © 2021 Linfeng Zhong et al.</rights><rights>COPYRIGHT 2021 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2021 Linfeng Zhong et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-238efcadf10f41affee84fd33edd4401e16ca7fa7a19e580026064fc9c99e3ab3</citedby><cites>FETCH-LOGICAL-c481t-238efcadf10f41affee84fd33edd4401e16ca7fa7a19e580026064fc9c99e3ab3</cites><orcidid>0000-0003-1448-4336</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2480126342/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2480126342?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4022,25751,27921,27922,27923,37010,44588,74896</link.rule.ids></links><search><contributor>Gan, Chenquan</contributor><contributor>Chenquan Gan</contributor><creatorcontrib>Zhong, Linfeng</creatorcontrib><creatorcontrib>Xue, Xiaoyu</creatorcontrib><creatorcontrib>Bai, Yu</creatorcontrib><creatorcontrib>Huang, Jin</creatorcontrib><creatorcontrib>Cheng, Qing</creatorcontrib><creatorcontrib>Huang, Longyang</creatorcontrib><creatorcontrib>Pan, Weijun</creatorcontrib><title>Information Spreading on Activity-Driven Temporal Networks with Two-Step Memory</title><title>Discrete dynamics in nature and society</title><description>Information spreading dynamics on the temporal network is a hot topic in the field of network science. In this paper, we propose an information spreading model on an activity-driven temporal network, in which a node is accepting the information dependents on the cumulatively received pieces of information in its recent two steps. With a generalized Markovian approach, we analyzed the information spreading size, and revealed that network temporality might suppress or promote the information spreading, which is determined by the information transmission probability. Besides, the system exists a critical mass, below which the information cannot globally outbreak, and above which the information outbreak size does not change with the initial seed size. Our theory can qualitatively well predict the numerical simulations.</description><subject>Critical mass</subject><subject>Information management</subject><subject>Mathematical models</subject><subject>Network topologies</subject><subject>Numerical analysis</subject><subject>Numerical prediction</subject><subject>Outbreaks</subject><subject>Simulation</subject><subject>Social networks</subject><issn>1026-0226</issn><issn>1607-887X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkU9P3DAQxaOqlUppb3yASD22Af-L7RxXFOhKUA5sJW7WrD1evN3EqWNY7bevIajHqvLBntHvPY3nVdUJJaeUtu0ZI4yeiZZIQtmb6ohKohqt1f3b8iZMNoQx-b76ME1bQhjRHTuqbpeDj6mHHOJQ340JwYVhU5diYXN4CvnQfEvhCYd6hf0YE-zqH5j3Mf2a6n3ID_VqH5u7jGN9g31Mh4_VOw-7CT-93sfVz8uL1fn35vr2anm-uG6s0DQ3jGv0FpynxAsK3iNq4R3n6JwQhCKVFpQHBbTDVpdxJZHC2852HXJY8-NqOfu6CFszptBDOpgIwbw0YtoYSDnYHRp00jHKBXdcCdXxNeNWEbGWdO2JkqJ4fZ69xhR_P-KUzTY-pqGMb5jQZZeSC1ao05naQDENZW05gS3HYR9sHNCH0l_ITiqmlKD_LdC85Urrtgi-zgKb4jQl9H__RYl5Dtg8B2xeAy74lxl_CIODffg3_QcklKOq</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Zhong, Linfeng</creator><creator>Xue, Xiaoyu</creator><creator>Bai, Yu</creator><creator>Huang, Jin</creator><creator>Cheng, Qing</creator><creator>Huang, Longyang</creator><creator>Pan, Weijun</creator><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1448-4336</orcidid></search><sort><creationdate>2021</creationdate><title>Information Spreading on Activity-Driven Temporal Networks with Two-Step Memory</title><author>Zhong, Linfeng ; Xue, Xiaoyu ; Bai, Yu ; Huang, Jin ; Cheng, Qing ; Huang, Longyang ; Pan, Weijun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-238efcadf10f41affee84fd33edd4401e16ca7fa7a19e580026064fc9c99e3ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Critical mass</topic><topic>Information management</topic><topic>Mathematical models</topic><topic>Network topologies</topic><topic>Numerical analysis</topic><topic>Numerical prediction</topic><topic>Outbreaks</topic><topic>Simulation</topic><topic>Social networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong, Linfeng</creatorcontrib><creatorcontrib>Xue, Xiaoyu</creatorcontrib><creatorcontrib>Bai, Yu</creatorcontrib><creatorcontrib>Huang, Jin</creatorcontrib><creatorcontrib>Cheng, Qing</creatorcontrib><creatorcontrib>Huang, Longyang</creatorcontrib><creatorcontrib>Pan, Weijun</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Discrete dynamics in nature and society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhong, Linfeng</au><au>Xue, Xiaoyu</au><au>Bai, Yu</au><au>Huang, Jin</au><au>Cheng, Qing</au><au>Huang, Longyang</au><au>Pan, Weijun</au><au>Gan, Chenquan</au><au>Chenquan Gan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Information Spreading on Activity-Driven Temporal Networks with Two-Step Memory</atitle><jtitle>Discrete dynamics in nature and society</jtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>1026-0226</issn><eissn>1607-887X</eissn><abstract>Information spreading dynamics on the temporal network is a hot topic in the field of network science. In this paper, we propose an information spreading model on an activity-driven temporal network, in which a node is accepting the information dependents on the cumulatively received pieces of information in its recent two steps. With a generalized Markovian approach, we analyzed the information spreading size, and revealed that network temporality might suppress or promote the information spreading, which is determined by the information transmission probability. Besides, the system exists a critical mass, below which the information cannot globally outbreak, and above which the information outbreak size does not change with the initial seed size. Our theory can qualitatively well predict the numerical simulations.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2021/4506012</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1448-4336</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1026-0226
ispartof Discrete dynamics in nature and society, 2021, Vol.2021, p.1-7
issn 1026-0226
1607-887X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ed6d21343d374793b23c704b61bf0764
source Wiley Online Library Journals Open Access; Publicly Available Content Database
subjects Critical mass
Information management
Mathematical models
Network topologies
Numerical analysis
Numerical prediction
Outbreaks
Simulation
Social networks
title Information Spreading on Activity-Driven Temporal Networks with Two-Step Memory
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T05%3A42%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Information%20Spreading%20on%20Activity-Driven%20Temporal%20Networks%20with%20Two-Step%20Memory&rft.jtitle=Discrete%20dynamics%20in%20nature%20and%20society&rft.au=Zhong,%20Linfeng&rft.date=2021&rft.volume=2021&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=1026-0226&rft.eissn=1607-887X&rft_id=info:doi/10.1155/2021/4506012&rft_dat=%3Cgale_doaj_%3EA683537885%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c481t-238efcadf10f41affee84fd33edd4401e16ca7fa7a19e580026064fc9c99e3ab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2480126342&rft_id=info:pmid/&rft_galeid=A683537885&rfr_iscdi=true