Loading…
Information Spreading on Activity-Driven Temporal Networks with Two-Step Memory
Information spreading dynamics on the temporal network is a hot topic in the field of network science. In this paper, we propose an information spreading model on an activity-driven temporal network, in which a node is accepting the information dependents on the cumulatively received pieces of infor...
Saved in:
Published in: | Discrete dynamics in nature and society 2021, Vol.2021, p.1-7 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c481t-238efcadf10f41affee84fd33edd4401e16ca7fa7a19e580026064fc9c99e3ab3 |
---|---|
cites | cdi_FETCH-LOGICAL-c481t-238efcadf10f41affee84fd33edd4401e16ca7fa7a19e580026064fc9c99e3ab3 |
container_end_page | 7 |
container_issue | |
container_start_page | 1 |
container_title | Discrete dynamics in nature and society |
container_volume | 2021 |
creator | Zhong, Linfeng Xue, Xiaoyu Bai, Yu Huang, Jin Cheng, Qing Huang, Longyang Pan, Weijun |
description | Information spreading dynamics on the temporal network is a hot topic in the field of network science. In this paper, we propose an information spreading model on an activity-driven temporal network, in which a node is accepting the information dependents on the cumulatively received pieces of information in its recent two steps. With a generalized Markovian approach, we analyzed the information spreading size, and revealed that network temporality might suppress or promote the information spreading, which is determined by the information transmission probability. Besides, the system exists a critical mass, below which the information cannot globally outbreak, and above which the information outbreak size does not change with the initial seed size. Our theory can qualitatively well predict the numerical simulations. |
doi_str_mv | 10.1155/2021/4506012 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ed6d21343d374793b23c704b61bf0764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A683537885</galeid><doaj_id>oai_doaj_org_article_ed6d21343d374793b23c704b61bf0764</doaj_id><sourcerecordid>A683537885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-238efcadf10f41affee84fd33edd4401e16ca7fa7a19e580026064fc9c99e3ab3</originalsourceid><addsrcrecordid>eNqNkU9P3DAQxaOqlUppb3yASD22Af-L7RxXFOhKUA5sJW7WrD1evN3EqWNY7bevIajHqvLBntHvPY3nVdUJJaeUtu0ZI4yeiZZIQtmb6ohKohqt1f3b8iZMNoQx-b76ME1bQhjRHTuqbpeDj6mHHOJQ340JwYVhU5diYXN4CvnQfEvhCYd6hf0YE-zqH5j3Mf2a6n3ID_VqH5u7jGN9g31Mh4_VOw-7CT-93sfVz8uL1fn35vr2anm-uG6s0DQ3jGv0FpynxAsK3iNq4R3n6JwQhCKVFpQHBbTDVpdxJZHC2852HXJY8-NqOfu6CFszptBDOpgIwbw0YtoYSDnYHRp00jHKBXdcCdXxNeNWEbGWdO2JkqJ4fZ69xhR_P-KUzTY-pqGMb5jQZZeSC1ao05naQDENZW05gS3HYR9sHNCH0l_ITiqmlKD_LdC85Urrtgi-zgKb4jQl9H__RYl5Dtg8B2xeAy74lxl_CIODffg3_QcklKOq</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480126342</pqid></control><display><type>article</type><title>Information Spreading on Activity-Driven Temporal Networks with Two-Step Memory</title><source>Wiley Online Library Journals Open Access</source><source>Publicly Available Content Database</source><creator>Zhong, Linfeng ; Xue, Xiaoyu ; Bai, Yu ; Huang, Jin ; Cheng, Qing ; Huang, Longyang ; Pan, Weijun</creator><contributor>Gan, Chenquan ; Chenquan Gan</contributor><creatorcontrib>Zhong, Linfeng ; Xue, Xiaoyu ; Bai, Yu ; Huang, Jin ; Cheng, Qing ; Huang, Longyang ; Pan, Weijun ; Gan, Chenquan ; Chenquan Gan</creatorcontrib><description>Information spreading dynamics on the temporal network is a hot topic in the field of network science. In this paper, we propose an information spreading model on an activity-driven temporal network, in which a node is accepting the information dependents on the cumulatively received pieces of information in its recent two steps. With a generalized Markovian approach, we analyzed the information spreading size, and revealed that network temporality might suppress or promote the information spreading, which is determined by the information transmission probability. Besides, the system exists a critical mass, below which the information cannot globally outbreak, and above which the information outbreak size does not change with the initial seed size. Our theory can qualitatively well predict the numerical simulations.</description><identifier>ISSN: 1026-0226</identifier><identifier>EISSN: 1607-887X</identifier><identifier>DOI: 10.1155/2021/4506012</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Critical mass ; Information management ; Mathematical models ; Network topologies ; Numerical analysis ; Numerical prediction ; Outbreaks ; Simulation ; Social networks</subject><ispartof>Discrete dynamics in nature and society, 2021, Vol.2021, p.1-7</ispartof><rights>Copyright © 2021 Linfeng Zhong et al.</rights><rights>COPYRIGHT 2021 John Wiley & Sons, Inc.</rights><rights>Copyright © 2021 Linfeng Zhong et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-238efcadf10f41affee84fd33edd4401e16ca7fa7a19e580026064fc9c99e3ab3</citedby><cites>FETCH-LOGICAL-c481t-238efcadf10f41affee84fd33edd4401e16ca7fa7a19e580026064fc9c99e3ab3</cites><orcidid>0000-0003-1448-4336</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2480126342/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2480126342?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4022,25751,27921,27922,27923,37010,44588,74896</link.rule.ids></links><search><contributor>Gan, Chenquan</contributor><contributor>Chenquan Gan</contributor><creatorcontrib>Zhong, Linfeng</creatorcontrib><creatorcontrib>Xue, Xiaoyu</creatorcontrib><creatorcontrib>Bai, Yu</creatorcontrib><creatorcontrib>Huang, Jin</creatorcontrib><creatorcontrib>Cheng, Qing</creatorcontrib><creatorcontrib>Huang, Longyang</creatorcontrib><creatorcontrib>Pan, Weijun</creatorcontrib><title>Information Spreading on Activity-Driven Temporal Networks with Two-Step Memory</title><title>Discrete dynamics in nature and society</title><description>Information spreading dynamics on the temporal network is a hot topic in the field of network science. In this paper, we propose an information spreading model on an activity-driven temporal network, in which a node is accepting the information dependents on the cumulatively received pieces of information in its recent two steps. With a generalized Markovian approach, we analyzed the information spreading size, and revealed that network temporality might suppress or promote the information spreading, which is determined by the information transmission probability. Besides, the system exists a critical mass, below which the information cannot globally outbreak, and above which the information outbreak size does not change with the initial seed size. Our theory can qualitatively well predict the numerical simulations.</description><subject>Critical mass</subject><subject>Information management</subject><subject>Mathematical models</subject><subject>Network topologies</subject><subject>Numerical analysis</subject><subject>Numerical prediction</subject><subject>Outbreaks</subject><subject>Simulation</subject><subject>Social networks</subject><issn>1026-0226</issn><issn>1607-887X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkU9P3DAQxaOqlUppb3yASD22Af-L7RxXFOhKUA5sJW7WrD1evN3EqWNY7bevIajHqvLBntHvPY3nVdUJJaeUtu0ZI4yeiZZIQtmb6ohKohqt1f3b8iZMNoQx-b76ME1bQhjRHTuqbpeDj6mHHOJQ340JwYVhU5diYXN4CvnQfEvhCYd6hf0YE-zqH5j3Mf2a6n3ID_VqH5u7jGN9g31Mh4_VOw-7CT-93sfVz8uL1fn35vr2anm-uG6s0DQ3jGv0FpynxAsK3iNq4R3n6JwQhCKVFpQHBbTDVpdxJZHC2852HXJY8-NqOfu6CFszptBDOpgIwbw0YtoYSDnYHRp00jHKBXdcCdXxNeNWEbGWdO2JkqJ4fZ69xhR_P-KUzTY-pqGMb5jQZZeSC1ao05naQDENZW05gS3HYR9sHNCH0l_ITiqmlKD_LdC85Urrtgi-zgKb4jQl9H__RYl5Dtg8B2xeAy74lxl_CIODffg3_QcklKOq</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Zhong, Linfeng</creator><creator>Xue, Xiaoyu</creator><creator>Bai, Yu</creator><creator>Huang, Jin</creator><creator>Cheng, Qing</creator><creator>Huang, Longyang</creator><creator>Pan, Weijun</creator><general>Hindawi</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1448-4336</orcidid></search><sort><creationdate>2021</creationdate><title>Information Spreading on Activity-Driven Temporal Networks with Two-Step Memory</title><author>Zhong, Linfeng ; Xue, Xiaoyu ; Bai, Yu ; Huang, Jin ; Cheng, Qing ; Huang, Longyang ; Pan, Weijun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-238efcadf10f41affee84fd33edd4401e16ca7fa7a19e580026064fc9c99e3ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Critical mass</topic><topic>Information management</topic><topic>Mathematical models</topic><topic>Network topologies</topic><topic>Numerical analysis</topic><topic>Numerical prediction</topic><topic>Outbreaks</topic><topic>Simulation</topic><topic>Social networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong, Linfeng</creatorcontrib><creatorcontrib>Xue, Xiaoyu</creatorcontrib><creatorcontrib>Bai, Yu</creatorcontrib><creatorcontrib>Huang, Jin</creatorcontrib><creatorcontrib>Cheng, Qing</creatorcontrib><creatorcontrib>Huang, Longyang</creatorcontrib><creatorcontrib>Pan, Weijun</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Discrete dynamics in nature and society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhong, Linfeng</au><au>Xue, Xiaoyu</au><au>Bai, Yu</au><au>Huang, Jin</au><au>Cheng, Qing</au><au>Huang, Longyang</au><au>Pan, Weijun</au><au>Gan, Chenquan</au><au>Chenquan Gan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Information Spreading on Activity-Driven Temporal Networks with Two-Step Memory</atitle><jtitle>Discrete dynamics in nature and society</jtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>1026-0226</issn><eissn>1607-887X</eissn><abstract>Information spreading dynamics on the temporal network is a hot topic in the field of network science. In this paper, we propose an information spreading model on an activity-driven temporal network, in which a node is accepting the information dependents on the cumulatively received pieces of information in its recent two steps. With a generalized Markovian approach, we analyzed the information spreading size, and revealed that network temporality might suppress or promote the information spreading, which is determined by the information transmission probability. Besides, the system exists a critical mass, below which the information cannot globally outbreak, and above which the information outbreak size does not change with the initial seed size. Our theory can qualitatively well predict the numerical simulations.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2021/4506012</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1448-4336</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1026-0226 |
ispartof | Discrete dynamics in nature and society, 2021, Vol.2021, p.1-7 |
issn | 1026-0226 1607-887X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ed6d21343d374793b23c704b61bf0764 |
source | Wiley Online Library Journals Open Access; Publicly Available Content Database |
subjects | Critical mass Information management Mathematical models Network topologies Numerical analysis Numerical prediction Outbreaks Simulation Social networks |
title | Information Spreading on Activity-Driven Temporal Networks with Two-Step Memory |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T05%3A42%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Information%20Spreading%20on%20Activity-Driven%20Temporal%20Networks%20with%20Two-Step%20Memory&rft.jtitle=Discrete%20dynamics%20in%20nature%20and%20society&rft.au=Zhong,%20Linfeng&rft.date=2021&rft.volume=2021&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=1026-0226&rft.eissn=1607-887X&rft_id=info:doi/10.1155/2021/4506012&rft_dat=%3Cgale_doaj_%3EA683537885%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c481t-238efcadf10f41affee84fd33edd4401e16ca7fa7a19e580026064fc9c99e3ab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2480126342&rft_id=info:pmid/&rft_galeid=A683537885&rfr_iscdi=true |