Loading…
First-Order and High-Order Repetitive Control for Single-Phase Grid-Connected Inverter
With the increasing demand of users for power sources and quality, how to provide high-quality renewable clean energy has become a key issue of power electronics. The main idea of this paper is to develop a composite control including a PI control and repetitive control for a single-phase grid-conne...
Saved in:
Published in: | Complexity (New York, N.Y.) N.Y.), 2020, Vol.2020 (2020), p.1-10 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | With the increasing demand of users for power sources and quality, how to provide high-quality renewable clean energy has become a key issue of power electronics. The main idea of this paper is to develop a composite control including a PI control and repetitive control for a single-phase grid-connected inverter to eliminate the effects of harmonics, which can obtain better steady-state and dynamic responses of the single-phase inverter system and reduce the net current harmonics. The modelling of a single-phase inverter is first introduced; then a first-order repetitive control is developed for the proposed grid-connected inverter. Moreover, a high-order repetitive controller is adopted to further improve the robustness against the uncertainties in the period of signals. The stability and performance analysis are given for the first-order repetitive control and high-order repetitive control. Finally, comparative simulations are conducted in a circuit-level inverter model, which show the effectiveness of the proposed method. |
---|---|
ISSN: | 1076-2787 1099-0526 |
DOI: | 10.1155/2020/1094386 |