Loading…
Treg cells-derived exosomes promote blood-spinal cord barrier repair and motor function recovery after spinal cord injury by delivering miR-2861
The blood-spinal cord barrier (BSCB) is a physical barrier between the blood and the spinal cord parenchyma. Current evidence suggests that the disruption of BSCB integrity after spinal cord injury can lead to secondary injuries such as spinal cord edema and excessive inflammatory response. Regulato...
Saved in:
Published in: | Journal of nanobiotechnology 2023-10, Vol.21 (1), p.364-364, Article 364 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c598t-51e2062f1748c981046718f821441fe75ac207f1f6a055f5b254d976f00b81573 |
---|---|
cites | cdi_FETCH-LOGICAL-c598t-51e2062f1748c981046718f821441fe75ac207f1f6a055f5b254d976f00b81573 |
container_end_page | 364 |
container_issue | 1 |
container_start_page | 364 |
container_title | Journal of nanobiotechnology |
container_volume | 21 |
creator | Kong, Guang Xiong, Wu Li, Cong Xiao, Chenyu Wang, Siming Li, Wenbo Chen, Xiangjun Wang, Juan Chen, Sheng Zhang, Yongjie Gu, Jun Fan, Jin Jin, Zhengshuai |
description | The blood-spinal cord barrier (BSCB) is a physical barrier between the blood and the spinal cord parenchyma. Current evidence suggests that the disruption of BSCB integrity after spinal cord injury can lead to secondary injuries such as spinal cord edema and excessive inflammatory response. Regulatory T (Treg) cells are effective anti-inflammatory cells that can inhibit neuroinflammation after spinal cord injury, and their infiltration after spinal cord injury exhibits the same temporal and spatial characteristics as the automatic repair of BSCB. However, few studies have assessed the relationship between Treg cells and spinal cord injury, emphasizing BSCB integrity. This study explored whether Treg affects the recovery of BSCB after SCI and the underlying mechanism. We confirmed that spinal cord angiogenesis and Treg cell infiltration occurred simultaneously after SCI. Furthermore, we observed significant effects on BSCB repair and motor function in mice by Treg cell knockout and overexpression. Subsequently, we demonstrated the presence and function of exosomes in vitro. In addition, we found that Treg cell-derived exosomes encapsulated miR-2861, and miR-2861 regulated the expression of vascular tight junction (TJs) proteins. The luciferase reporter assay confirmed the negative regulation of IRAK1 by miR-2861, and a series of rescue experiments validated the biological function of IRAKI in regulating BSCB. In summary, we demonstrated that Treg cell-derived exosomes could package and deliver miR-2861 and regulate the expression of IRAK1 to affect BSCB integrity and motor function after SCI in mice, which provides novel insights for functional repair and limiting inflammation after SCI. |
doi_str_mv | 10.1186/s12951-023-02089-6 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_eda1238c467f428eb8591d9ebad23834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A767801649</galeid><doaj_id>oai_doaj_org_article_eda1238c467f428eb8591d9ebad23834</doaj_id><sourcerecordid>A767801649</sourcerecordid><originalsourceid>FETCH-LOGICAL-c598t-51e2062f1748c981046718f821441fe75ac207f1f6a055f5b254d976f00b81573</originalsourceid><addsrcrecordid>eNptksFu1DAQhiMEoqXwAhyQJS7lkGI7duycUFVRWKkSUilny7HHwaskXuxk1X0LHrne3VJ2EYqiRDPf_08y_oviLcEXhMj6YyK04aTEtMo3lk1ZPytOCROirAjnzw_eT4pXKS0xppRR9rI4qYRoGJPitPh9F6FDBvo-lRaiX4NFcB9SGCChVQxDmAC1fQi2TCs_6h6ZEC1qdYweIoqw0j4iPVqUyRCRm0cz-TDmjglriBuk3ZTBQ7Efl3NutBtkoc8Tox87NPjbksqavC5eON0nePP4PCt-XH--u_pa3nz7sri6vCkNb-RUcgIU19QRwaRpJMGsFkQ6SQljxIHg2lAsHHG1xpw73lLObCNqh3ErCRfVWbHY-9qgl2oV_aDjRgXt1a4QYqd0nLzpQYHVhFbS5BGOUQmt5A2xDbTa5nLFstenvddqbgewBsYp6v7I9Lgz-p-qC2tF8rfRfHTZ4fzRIYZfM6RJDT5tT0WPEOakqBQVZY0UOKPv_0GXYY55uTtKcIybqvlLdTr_gR9dyIPN1lRdilpITGq2pS7-Q-XLwuBNGMH5XD8SfDgSZGaC-6nTc0pq8f32mKV71sSQUgT3tBCC1TbAah9glQOsdgFWdRa9O1zlk-RPYqsHMFvqNQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2877500939</pqid></control><display><type>article</type><title>Treg cells-derived exosomes promote blood-spinal cord barrier repair and motor function recovery after spinal cord injury by delivering miR-2861</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central Free</source><creator>Kong, Guang ; Xiong, Wu ; Li, Cong ; Xiao, Chenyu ; Wang, Siming ; Li, Wenbo ; Chen, Xiangjun ; Wang, Juan ; Chen, Sheng ; Zhang, Yongjie ; Gu, Jun ; Fan, Jin ; Jin, Zhengshuai</creator><creatorcontrib>Kong, Guang ; Xiong, Wu ; Li, Cong ; Xiao, Chenyu ; Wang, Siming ; Li, Wenbo ; Chen, Xiangjun ; Wang, Juan ; Chen, Sheng ; Zhang, Yongjie ; Gu, Jun ; Fan, Jin ; Jin, Zhengshuai</creatorcontrib><description>The blood-spinal cord barrier (BSCB) is a physical barrier between the blood and the spinal cord parenchyma. Current evidence suggests that the disruption of BSCB integrity after spinal cord injury can lead to secondary injuries such as spinal cord edema and excessive inflammatory response. Regulatory T (Treg) cells are effective anti-inflammatory cells that can inhibit neuroinflammation after spinal cord injury, and their infiltration after spinal cord injury exhibits the same temporal and spatial characteristics as the automatic repair of BSCB. However, few studies have assessed the relationship between Treg cells and spinal cord injury, emphasizing BSCB integrity. This study explored whether Treg affects the recovery of BSCB after SCI and the underlying mechanism. We confirmed that spinal cord angiogenesis and Treg cell infiltration occurred simultaneously after SCI. Furthermore, we observed significant effects on BSCB repair and motor function in mice by Treg cell knockout and overexpression. Subsequently, we demonstrated the presence and function of exosomes in vitro. In addition, we found that Treg cell-derived exosomes encapsulated miR-2861, and miR-2861 regulated the expression of vascular tight junction (TJs) proteins. The luciferase reporter assay confirmed the negative regulation of IRAK1 by miR-2861, and a series of rescue experiments validated the biological function of IRAKI in regulating BSCB. In summary, we demonstrated that Treg cell-derived exosomes could package and deliver miR-2861 and regulate the expression of IRAK1 to affect BSCB integrity and motor function after SCI in mice, which provides novel insights for functional repair and limiting inflammation after SCI.</description><identifier>ISSN: 1477-3155</identifier><identifier>EISSN: 1477-3155</identifier><identifier>DOI: 10.1186/s12951-023-02089-6</identifier><identifier>PMID: 37794487</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Angiogenesis ; Animals ; Barriers ; Blood ; Blood vessels ; Blood-Brain Barrier - metabolism ; Blood-spinal cord barrier ; Care and treatment ; Cells ; Cytokines ; Edema ; Exosomes ; Exosomes - metabolism ; Genetic aspects ; Health aspects ; Infiltration ; Inflammation ; Inflammatory response ; Injuries ; Integrity ; IRAK protein ; Lymphocytes T ; Mice ; MicroRNA ; MicroRNAs - genetics ; MicroRNAs - metabolism ; miRNA ; Neovascularization ; Neutrophils ; Parenchyma ; Permeability ; Proteins ; Rats ; Rats, Sprague-Dawley ; Recovery of Function ; Regulatory T cells ; Spinal cord injuries ; Spinal Cord Injuries - metabolism ; Spinal cord injury ; T cells ; T-Lymphocytes, Regulatory - metabolism ; Veins & arteries</subject><ispartof>Journal of nanobiotechnology, 2023-10, Vol.21 (1), p.364-364, Article 364</ispartof><rights>2023. BioMed Central Ltd., part of Springer Nature.</rights><rights>COPYRIGHT 2023 BioMed Central Ltd.</rights><rights>2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>BioMed Central Ltd., part of Springer Nature 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c598t-51e2062f1748c981046718f821441fe75ac207f1f6a055f5b254d976f00b81573</citedby><cites>FETCH-LOGICAL-c598t-51e2062f1748c981046718f821441fe75ac207f1f6a055f5b254d976f00b81573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10552208/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2877500939?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37794487$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kong, Guang</creatorcontrib><creatorcontrib>Xiong, Wu</creatorcontrib><creatorcontrib>Li, Cong</creatorcontrib><creatorcontrib>Xiao, Chenyu</creatorcontrib><creatorcontrib>Wang, Siming</creatorcontrib><creatorcontrib>Li, Wenbo</creatorcontrib><creatorcontrib>Chen, Xiangjun</creatorcontrib><creatorcontrib>Wang, Juan</creatorcontrib><creatorcontrib>Chen, Sheng</creatorcontrib><creatorcontrib>Zhang, Yongjie</creatorcontrib><creatorcontrib>Gu, Jun</creatorcontrib><creatorcontrib>Fan, Jin</creatorcontrib><creatorcontrib>Jin, Zhengshuai</creatorcontrib><title>Treg cells-derived exosomes promote blood-spinal cord barrier repair and motor function recovery after spinal cord injury by delivering miR-2861</title><title>Journal of nanobiotechnology</title><addtitle>J Nanobiotechnology</addtitle><description>The blood-spinal cord barrier (BSCB) is a physical barrier between the blood and the spinal cord parenchyma. Current evidence suggests that the disruption of BSCB integrity after spinal cord injury can lead to secondary injuries such as spinal cord edema and excessive inflammatory response. Regulatory T (Treg) cells are effective anti-inflammatory cells that can inhibit neuroinflammation after spinal cord injury, and their infiltration after spinal cord injury exhibits the same temporal and spatial characteristics as the automatic repair of BSCB. However, few studies have assessed the relationship between Treg cells and spinal cord injury, emphasizing BSCB integrity. This study explored whether Treg affects the recovery of BSCB after SCI and the underlying mechanism. We confirmed that spinal cord angiogenesis and Treg cell infiltration occurred simultaneously after SCI. Furthermore, we observed significant effects on BSCB repair and motor function in mice by Treg cell knockout and overexpression. Subsequently, we demonstrated the presence and function of exosomes in vitro. In addition, we found that Treg cell-derived exosomes encapsulated miR-2861, and miR-2861 regulated the expression of vascular tight junction (TJs) proteins. The luciferase reporter assay confirmed the negative regulation of IRAK1 by miR-2861, and a series of rescue experiments validated the biological function of IRAKI in regulating BSCB. In summary, we demonstrated that Treg cell-derived exosomes could package and deliver miR-2861 and regulate the expression of IRAK1 to affect BSCB integrity and motor function after SCI in mice, which provides novel insights for functional repair and limiting inflammation after SCI.</description><subject>Angiogenesis</subject><subject>Animals</subject><subject>Barriers</subject><subject>Blood</subject><subject>Blood vessels</subject><subject>Blood-Brain Barrier - metabolism</subject><subject>Blood-spinal cord barrier</subject><subject>Care and treatment</subject><subject>Cells</subject><subject>Cytokines</subject><subject>Edema</subject><subject>Exosomes</subject><subject>Exosomes - metabolism</subject><subject>Genetic aspects</subject><subject>Health aspects</subject><subject>Infiltration</subject><subject>Inflammation</subject><subject>Inflammatory response</subject><subject>Injuries</subject><subject>Integrity</subject><subject>IRAK protein</subject><subject>Lymphocytes T</subject><subject>Mice</subject><subject>MicroRNA</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>miRNA</subject><subject>Neovascularization</subject><subject>Neutrophils</subject><subject>Parenchyma</subject><subject>Permeability</subject><subject>Proteins</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Recovery of Function</subject><subject>Regulatory T cells</subject><subject>Spinal cord injuries</subject><subject>Spinal Cord Injuries - metabolism</subject><subject>Spinal cord injury</subject><subject>T cells</subject><subject>T-Lymphocytes, Regulatory - metabolism</subject><subject>Veins & arteries</subject><issn>1477-3155</issn><issn>1477-3155</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptksFu1DAQhiMEoqXwAhyQJS7lkGI7duycUFVRWKkSUilny7HHwaskXuxk1X0LHrne3VJ2EYqiRDPf_08y_oviLcEXhMj6YyK04aTEtMo3lk1ZPytOCROirAjnzw_eT4pXKS0xppRR9rI4qYRoGJPitPh9F6FDBvo-lRaiX4NFcB9SGCChVQxDmAC1fQi2TCs_6h6ZEC1qdYweIoqw0j4iPVqUyRCRm0cz-TDmjglriBuk3ZTBQ7Efl3NutBtkoc8Tox87NPjbksqavC5eON0nePP4PCt-XH--u_pa3nz7sri6vCkNb-RUcgIU19QRwaRpJMGsFkQ6SQljxIHg2lAsHHG1xpw73lLObCNqh3ErCRfVWbHY-9qgl2oV_aDjRgXt1a4QYqd0nLzpQYHVhFbS5BGOUQmt5A2xDbTa5nLFstenvddqbgewBsYp6v7I9Lgz-p-qC2tF8rfRfHTZ4fzRIYZfM6RJDT5tT0WPEOakqBQVZY0UOKPv_0GXYY55uTtKcIybqvlLdTr_gR9dyIPN1lRdilpITGq2pS7-Q-XLwuBNGMH5XD8SfDgSZGaC-6nTc0pq8f32mKV71sSQUgT3tBCC1TbAah9glQOsdgFWdRa9O1zlk-RPYqsHMFvqNQ</recordid><startdate>20231004</startdate><enddate>20231004</enddate><creator>Kong, Guang</creator><creator>Xiong, Wu</creator><creator>Li, Cong</creator><creator>Xiao, Chenyu</creator><creator>Wang, Siming</creator><creator>Li, Wenbo</creator><creator>Chen, Xiangjun</creator><creator>Wang, Juan</creator><creator>Chen, Sheng</creator><creator>Zhang, Yongjie</creator><creator>Gu, Jun</creator><creator>Fan, Jin</creator><creator>Jin, Zhengshuai</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20231004</creationdate><title>Treg cells-derived exosomes promote blood-spinal cord barrier repair and motor function recovery after spinal cord injury by delivering miR-2861</title><author>Kong, Guang ; Xiong, Wu ; Li, Cong ; Xiao, Chenyu ; Wang, Siming ; Li, Wenbo ; Chen, Xiangjun ; Wang, Juan ; Chen, Sheng ; Zhang, Yongjie ; Gu, Jun ; Fan, Jin ; Jin, Zhengshuai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c598t-51e2062f1748c981046718f821441fe75ac207f1f6a055f5b254d976f00b81573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Angiogenesis</topic><topic>Animals</topic><topic>Barriers</topic><topic>Blood</topic><topic>Blood vessels</topic><topic>Blood-Brain Barrier - metabolism</topic><topic>Blood-spinal cord barrier</topic><topic>Care and treatment</topic><topic>Cells</topic><topic>Cytokines</topic><topic>Edema</topic><topic>Exosomes</topic><topic>Exosomes - metabolism</topic><topic>Genetic aspects</topic><topic>Health aspects</topic><topic>Infiltration</topic><topic>Inflammation</topic><topic>Inflammatory response</topic><topic>Injuries</topic><topic>Integrity</topic><topic>IRAK protein</topic><topic>Lymphocytes T</topic><topic>Mice</topic><topic>MicroRNA</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>miRNA</topic><topic>Neovascularization</topic><topic>Neutrophils</topic><topic>Parenchyma</topic><topic>Permeability</topic><topic>Proteins</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Recovery of Function</topic><topic>Regulatory T cells</topic><topic>Spinal cord injuries</topic><topic>Spinal Cord Injuries - metabolism</topic><topic>Spinal cord injury</topic><topic>T cells</topic><topic>T-Lymphocytes, Regulatory - metabolism</topic><topic>Veins & arteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kong, Guang</creatorcontrib><creatorcontrib>Xiong, Wu</creatorcontrib><creatorcontrib>Li, Cong</creatorcontrib><creatorcontrib>Xiao, Chenyu</creatorcontrib><creatorcontrib>Wang, Siming</creatorcontrib><creatorcontrib>Li, Wenbo</creatorcontrib><creatorcontrib>Chen, Xiangjun</creatorcontrib><creatorcontrib>Wang, Juan</creatorcontrib><creatorcontrib>Chen, Sheng</creatorcontrib><creatorcontrib>Zhang, Yongjie</creatorcontrib><creatorcontrib>Gu, Jun</creatorcontrib><creatorcontrib>Fan, Jin</creatorcontrib><creatorcontrib>Jin, Zhengshuai</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest - Health & Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of nanobiotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kong, Guang</au><au>Xiong, Wu</au><au>Li, Cong</au><au>Xiao, Chenyu</au><au>Wang, Siming</au><au>Li, Wenbo</au><au>Chen, Xiangjun</au><au>Wang, Juan</au><au>Chen, Sheng</au><au>Zhang, Yongjie</au><au>Gu, Jun</au><au>Fan, Jin</au><au>Jin, Zhengshuai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Treg cells-derived exosomes promote blood-spinal cord barrier repair and motor function recovery after spinal cord injury by delivering miR-2861</atitle><jtitle>Journal of nanobiotechnology</jtitle><addtitle>J Nanobiotechnology</addtitle><date>2023-10-04</date><risdate>2023</risdate><volume>21</volume><issue>1</issue><spage>364</spage><epage>364</epage><pages>364-364</pages><artnum>364</artnum><issn>1477-3155</issn><eissn>1477-3155</eissn><abstract>The blood-spinal cord barrier (BSCB) is a physical barrier between the blood and the spinal cord parenchyma. Current evidence suggests that the disruption of BSCB integrity after spinal cord injury can lead to secondary injuries such as spinal cord edema and excessive inflammatory response. Regulatory T (Treg) cells are effective anti-inflammatory cells that can inhibit neuroinflammation after spinal cord injury, and their infiltration after spinal cord injury exhibits the same temporal and spatial characteristics as the automatic repair of BSCB. However, few studies have assessed the relationship between Treg cells and spinal cord injury, emphasizing BSCB integrity. This study explored whether Treg affects the recovery of BSCB after SCI and the underlying mechanism. We confirmed that spinal cord angiogenesis and Treg cell infiltration occurred simultaneously after SCI. Furthermore, we observed significant effects on BSCB repair and motor function in mice by Treg cell knockout and overexpression. Subsequently, we demonstrated the presence and function of exosomes in vitro. In addition, we found that Treg cell-derived exosomes encapsulated miR-2861, and miR-2861 regulated the expression of vascular tight junction (TJs) proteins. The luciferase reporter assay confirmed the negative regulation of IRAK1 by miR-2861, and a series of rescue experiments validated the biological function of IRAKI in regulating BSCB. In summary, we demonstrated that Treg cell-derived exosomes could package and deliver miR-2861 and regulate the expression of IRAK1 to affect BSCB integrity and motor function after SCI in mice, which provides novel insights for functional repair and limiting inflammation after SCI.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>37794487</pmid><doi>10.1186/s12951-023-02089-6</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1477-3155 |
ispartof | Journal of nanobiotechnology, 2023-10, Vol.21 (1), p.364-364, Article 364 |
issn | 1477-3155 1477-3155 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_eda1238c467f428eb8591d9ebad23834 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central Free |
subjects | Angiogenesis Animals Barriers Blood Blood vessels Blood-Brain Barrier - metabolism Blood-spinal cord barrier Care and treatment Cells Cytokines Edema Exosomes Exosomes - metabolism Genetic aspects Health aspects Infiltration Inflammation Inflammatory response Injuries Integrity IRAK protein Lymphocytes T Mice MicroRNA MicroRNAs - genetics MicroRNAs - metabolism miRNA Neovascularization Neutrophils Parenchyma Permeability Proteins Rats Rats, Sprague-Dawley Recovery of Function Regulatory T cells Spinal cord injuries Spinal Cord Injuries - metabolism Spinal cord injury T cells T-Lymphocytes, Regulatory - metabolism Veins & arteries |
title | Treg cells-derived exosomes promote blood-spinal cord barrier repair and motor function recovery after spinal cord injury by delivering miR-2861 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A57%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Treg%20cells-derived%20exosomes%20promote%20blood-spinal%20cord%20barrier%20repair%20and%20motor%20function%20recovery%20after%20spinal%20cord%20injury%20by%20delivering%20miR-2861&rft.jtitle=Journal%20of%20nanobiotechnology&rft.au=Kong,%20Guang&rft.date=2023-10-04&rft.volume=21&rft.issue=1&rft.spage=364&rft.epage=364&rft.pages=364-364&rft.artnum=364&rft.issn=1477-3155&rft.eissn=1477-3155&rft_id=info:doi/10.1186/s12951-023-02089-6&rft_dat=%3Cgale_doaj_%3EA767801649%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c598t-51e2062f1748c981046718f821441fe75ac207f1f6a055f5b254d976f00b81573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2877500939&rft_id=info:pmid/37794487&rft_galeid=A767801649&rfr_iscdi=true |