Loading…

Treg cells-derived exosomes promote blood-spinal cord barrier repair and motor function recovery after spinal cord injury by delivering miR-2861

The blood-spinal cord barrier (BSCB) is a physical barrier between the blood and the spinal cord parenchyma. Current evidence suggests that the disruption of BSCB integrity after spinal cord injury can lead to secondary injuries such as spinal cord edema and excessive inflammatory response. Regulato...

Full description

Saved in:
Bibliographic Details
Published in:Journal of nanobiotechnology 2023-10, Vol.21 (1), p.364-364, Article 364
Main Authors: Kong, Guang, Xiong, Wu, Li, Cong, Xiao, Chenyu, Wang, Siming, Li, Wenbo, Chen, Xiangjun, Wang, Juan, Chen, Sheng, Zhang, Yongjie, Gu, Jun, Fan, Jin, Jin, Zhengshuai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c598t-51e2062f1748c981046718f821441fe75ac207f1f6a055f5b254d976f00b81573
cites cdi_FETCH-LOGICAL-c598t-51e2062f1748c981046718f821441fe75ac207f1f6a055f5b254d976f00b81573
container_end_page 364
container_issue 1
container_start_page 364
container_title Journal of nanobiotechnology
container_volume 21
creator Kong, Guang
Xiong, Wu
Li, Cong
Xiao, Chenyu
Wang, Siming
Li, Wenbo
Chen, Xiangjun
Wang, Juan
Chen, Sheng
Zhang, Yongjie
Gu, Jun
Fan, Jin
Jin, Zhengshuai
description The blood-spinal cord barrier (BSCB) is a physical barrier between the blood and the spinal cord parenchyma. Current evidence suggests that the disruption of BSCB integrity after spinal cord injury can lead to secondary injuries such as spinal cord edema and excessive inflammatory response. Regulatory T (Treg) cells are effective anti-inflammatory cells that can inhibit neuroinflammation after spinal cord injury, and their infiltration after spinal cord injury exhibits the same temporal and spatial characteristics as the automatic repair of BSCB. However, few studies have assessed the relationship between Treg cells and spinal cord injury, emphasizing BSCB integrity. This study explored whether Treg affects the recovery of BSCB after SCI and the underlying mechanism. We confirmed that spinal cord angiogenesis and Treg cell infiltration occurred simultaneously after SCI. Furthermore, we observed significant effects on BSCB repair and motor function in mice by Treg cell knockout and overexpression. Subsequently, we demonstrated the presence and function of exosomes in vitro. In addition, we found that Treg cell-derived exosomes encapsulated miR-2861, and miR-2861 regulated the expression of vascular tight junction (TJs) proteins. The luciferase reporter assay confirmed the negative regulation of IRAK1 by miR-2861, and a series of rescue experiments validated the biological function of IRAKI in regulating BSCB. In summary, we demonstrated that Treg cell-derived exosomes could package and deliver miR-2861 and regulate the expression of IRAK1 to affect BSCB integrity and motor function after SCI in mice, which provides novel insights for functional repair and limiting inflammation after SCI.
doi_str_mv 10.1186/s12951-023-02089-6
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_eda1238c467f428eb8591d9ebad23834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A767801649</galeid><doaj_id>oai_doaj_org_article_eda1238c467f428eb8591d9ebad23834</doaj_id><sourcerecordid>A767801649</sourcerecordid><originalsourceid>FETCH-LOGICAL-c598t-51e2062f1748c981046718f821441fe75ac207f1f6a055f5b254d976f00b81573</originalsourceid><addsrcrecordid>eNptksFu1DAQhiMEoqXwAhyQJS7lkGI7duycUFVRWKkSUilny7HHwaskXuxk1X0LHrne3VJ2EYqiRDPf_08y_oviLcEXhMj6YyK04aTEtMo3lk1ZPytOCROirAjnzw_eT4pXKS0xppRR9rI4qYRoGJPitPh9F6FDBvo-lRaiX4NFcB9SGCChVQxDmAC1fQi2TCs_6h6ZEC1qdYweIoqw0j4iPVqUyRCRm0cz-TDmjglriBuk3ZTBQ7Efl3NutBtkoc8Tox87NPjbksqavC5eON0nePP4PCt-XH--u_pa3nz7sri6vCkNb-RUcgIU19QRwaRpJMGsFkQ6SQljxIHg2lAsHHG1xpw73lLObCNqh3ErCRfVWbHY-9qgl2oV_aDjRgXt1a4QYqd0nLzpQYHVhFbS5BGOUQmt5A2xDbTa5nLFstenvddqbgewBsYp6v7I9Lgz-p-qC2tF8rfRfHTZ4fzRIYZfM6RJDT5tT0WPEOakqBQVZY0UOKPv_0GXYY55uTtKcIybqvlLdTr_gR9dyIPN1lRdilpITGq2pS7-Q-XLwuBNGMH5XD8SfDgSZGaC-6nTc0pq8f32mKV71sSQUgT3tBCC1TbAah9glQOsdgFWdRa9O1zlk-RPYqsHMFvqNQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2877500939</pqid></control><display><type>article</type><title>Treg cells-derived exosomes promote blood-spinal cord barrier repair and motor function recovery after spinal cord injury by delivering miR-2861</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central Free</source><creator>Kong, Guang ; Xiong, Wu ; Li, Cong ; Xiao, Chenyu ; Wang, Siming ; Li, Wenbo ; Chen, Xiangjun ; Wang, Juan ; Chen, Sheng ; Zhang, Yongjie ; Gu, Jun ; Fan, Jin ; Jin, Zhengshuai</creator><creatorcontrib>Kong, Guang ; Xiong, Wu ; Li, Cong ; Xiao, Chenyu ; Wang, Siming ; Li, Wenbo ; Chen, Xiangjun ; Wang, Juan ; Chen, Sheng ; Zhang, Yongjie ; Gu, Jun ; Fan, Jin ; Jin, Zhengshuai</creatorcontrib><description>The blood-spinal cord barrier (BSCB) is a physical barrier between the blood and the spinal cord parenchyma. Current evidence suggests that the disruption of BSCB integrity after spinal cord injury can lead to secondary injuries such as spinal cord edema and excessive inflammatory response. Regulatory T (Treg) cells are effective anti-inflammatory cells that can inhibit neuroinflammation after spinal cord injury, and their infiltration after spinal cord injury exhibits the same temporal and spatial characteristics as the automatic repair of BSCB. However, few studies have assessed the relationship between Treg cells and spinal cord injury, emphasizing BSCB integrity. This study explored whether Treg affects the recovery of BSCB after SCI and the underlying mechanism. We confirmed that spinal cord angiogenesis and Treg cell infiltration occurred simultaneously after SCI. Furthermore, we observed significant effects on BSCB repair and motor function in mice by Treg cell knockout and overexpression. Subsequently, we demonstrated the presence and function of exosomes in vitro. In addition, we found that Treg cell-derived exosomes encapsulated miR-2861, and miR-2861 regulated the expression of vascular tight junction (TJs) proteins. The luciferase reporter assay confirmed the negative regulation of IRAK1 by miR-2861, and a series of rescue experiments validated the biological function of IRAKI in regulating BSCB. In summary, we demonstrated that Treg cell-derived exosomes could package and deliver miR-2861 and regulate the expression of IRAK1 to affect BSCB integrity and motor function after SCI in mice, which provides novel insights for functional repair and limiting inflammation after SCI.</description><identifier>ISSN: 1477-3155</identifier><identifier>EISSN: 1477-3155</identifier><identifier>DOI: 10.1186/s12951-023-02089-6</identifier><identifier>PMID: 37794487</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Angiogenesis ; Animals ; Barriers ; Blood ; Blood vessels ; Blood-Brain Barrier - metabolism ; Blood-spinal cord barrier ; Care and treatment ; Cells ; Cytokines ; Edema ; Exosomes ; Exosomes - metabolism ; Genetic aspects ; Health aspects ; Infiltration ; Inflammation ; Inflammatory response ; Injuries ; Integrity ; IRAK protein ; Lymphocytes T ; Mice ; MicroRNA ; MicroRNAs - genetics ; MicroRNAs - metabolism ; miRNA ; Neovascularization ; Neutrophils ; Parenchyma ; Permeability ; Proteins ; Rats ; Rats, Sprague-Dawley ; Recovery of Function ; Regulatory T cells ; Spinal cord injuries ; Spinal Cord Injuries - metabolism ; Spinal cord injury ; T cells ; T-Lymphocytes, Regulatory - metabolism ; Veins &amp; arteries</subject><ispartof>Journal of nanobiotechnology, 2023-10, Vol.21 (1), p.364-364, Article 364</ispartof><rights>2023. BioMed Central Ltd., part of Springer Nature.</rights><rights>COPYRIGHT 2023 BioMed Central Ltd.</rights><rights>2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>BioMed Central Ltd., part of Springer Nature 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c598t-51e2062f1748c981046718f821441fe75ac207f1f6a055f5b254d976f00b81573</citedby><cites>FETCH-LOGICAL-c598t-51e2062f1748c981046718f821441fe75ac207f1f6a055f5b254d976f00b81573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10552208/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2877500939?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37794487$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kong, Guang</creatorcontrib><creatorcontrib>Xiong, Wu</creatorcontrib><creatorcontrib>Li, Cong</creatorcontrib><creatorcontrib>Xiao, Chenyu</creatorcontrib><creatorcontrib>Wang, Siming</creatorcontrib><creatorcontrib>Li, Wenbo</creatorcontrib><creatorcontrib>Chen, Xiangjun</creatorcontrib><creatorcontrib>Wang, Juan</creatorcontrib><creatorcontrib>Chen, Sheng</creatorcontrib><creatorcontrib>Zhang, Yongjie</creatorcontrib><creatorcontrib>Gu, Jun</creatorcontrib><creatorcontrib>Fan, Jin</creatorcontrib><creatorcontrib>Jin, Zhengshuai</creatorcontrib><title>Treg cells-derived exosomes promote blood-spinal cord barrier repair and motor function recovery after spinal cord injury by delivering miR-2861</title><title>Journal of nanobiotechnology</title><addtitle>J Nanobiotechnology</addtitle><description>The blood-spinal cord barrier (BSCB) is a physical barrier between the blood and the spinal cord parenchyma. Current evidence suggests that the disruption of BSCB integrity after spinal cord injury can lead to secondary injuries such as spinal cord edema and excessive inflammatory response. Regulatory T (Treg) cells are effective anti-inflammatory cells that can inhibit neuroinflammation after spinal cord injury, and their infiltration after spinal cord injury exhibits the same temporal and spatial characteristics as the automatic repair of BSCB. However, few studies have assessed the relationship between Treg cells and spinal cord injury, emphasizing BSCB integrity. This study explored whether Treg affects the recovery of BSCB after SCI and the underlying mechanism. We confirmed that spinal cord angiogenesis and Treg cell infiltration occurred simultaneously after SCI. Furthermore, we observed significant effects on BSCB repair and motor function in mice by Treg cell knockout and overexpression. Subsequently, we demonstrated the presence and function of exosomes in vitro. In addition, we found that Treg cell-derived exosomes encapsulated miR-2861, and miR-2861 regulated the expression of vascular tight junction (TJs) proteins. The luciferase reporter assay confirmed the negative regulation of IRAK1 by miR-2861, and a series of rescue experiments validated the biological function of IRAKI in regulating BSCB. In summary, we demonstrated that Treg cell-derived exosomes could package and deliver miR-2861 and regulate the expression of IRAK1 to affect BSCB integrity and motor function after SCI in mice, which provides novel insights for functional repair and limiting inflammation after SCI.</description><subject>Angiogenesis</subject><subject>Animals</subject><subject>Barriers</subject><subject>Blood</subject><subject>Blood vessels</subject><subject>Blood-Brain Barrier - metabolism</subject><subject>Blood-spinal cord barrier</subject><subject>Care and treatment</subject><subject>Cells</subject><subject>Cytokines</subject><subject>Edema</subject><subject>Exosomes</subject><subject>Exosomes - metabolism</subject><subject>Genetic aspects</subject><subject>Health aspects</subject><subject>Infiltration</subject><subject>Inflammation</subject><subject>Inflammatory response</subject><subject>Injuries</subject><subject>Integrity</subject><subject>IRAK protein</subject><subject>Lymphocytes T</subject><subject>Mice</subject><subject>MicroRNA</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>miRNA</subject><subject>Neovascularization</subject><subject>Neutrophils</subject><subject>Parenchyma</subject><subject>Permeability</subject><subject>Proteins</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Recovery of Function</subject><subject>Regulatory T cells</subject><subject>Spinal cord injuries</subject><subject>Spinal Cord Injuries - metabolism</subject><subject>Spinal cord injury</subject><subject>T cells</subject><subject>T-Lymphocytes, Regulatory - metabolism</subject><subject>Veins &amp; arteries</subject><issn>1477-3155</issn><issn>1477-3155</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptksFu1DAQhiMEoqXwAhyQJS7lkGI7duycUFVRWKkSUilny7HHwaskXuxk1X0LHrne3VJ2EYqiRDPf_08y_oviLcEXhMj6YyK04aTEtMo3lk1ZPytOCROirAjnzw_eT4pXKS0xppRR9rI4qYRoGJPitPh9F6FDBvo-lRaiX4NFcB9SGCChVQxDmAC1fQi2TCs_6h6ZEC1qdYweIoqw0j4iPVqUyRCRm0cz-TDmjglriBuk3ZTBQ7Efl3NutBtkoc8Tox87NPjbksqavC5eON0nePP4PCt-XH--u_pa3nz7sri6vCkNb-RUcgIU19QRwaRpJMGsFkQ6SQljxIHg2lAsHHG1xpw73lLObCNqh3ErCRfVWbHY-9qgl2oV_aDjRgXt1a4QYqd0nLzpQYHVhFbS5BGOUQmt5A2xDbTa5nLFstenvddqbgewBsYp6v7I9Lgz-p-qC2tF8rfRfHTZ4fzRIYZfM6RJDT5tT0WPEOakqBQVZY0UOKPv_0GXYY55uTtKcIybqvlLdTr_gR9dyIPN1lRdilpITGq2pS7-Q-XLwuBNGMH5XD8SfDgSZGaC-6nTc0pq8f32mKV71sSQUgT3tBCC1TbAah9glQOsdgFWdRa9O1zlk-RPYqsHMFvqNQ</recordid><startdate>20231004</startdate><enddate>20231004</enddate><creator>Kong, Guang</creator><creator>Xiong, Wu</creator><creator>Li, Cong</creator><creator>Xiao, Chenyu</creator><creator>Wang, Siming</creator><creator>Li, Wenbo</creator><creator>Chen, Xiangjun</creator><creator>Wang, Juan</creator><creator>Chen, Sheng</creator><creator>Zhang, Yongjie</creator><creator>Gu, Jun</creator><creator>Fan, Jin</creator><creator>Jin, Zhengshuai</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20231004</creationdate><title>Treg cells-derived exosomes promote blood-spinal cord barrier repair and motor function recovery after spinal cord injury by delivering miR-2861</title><author>Kong, Guang ; Xiong, Wu ; Li, Cong ; Xiao, Chenyu ; Wang, Siming ; Li, Wenbo ; Chen, Xiangjun ; Wang, Juan ; Chen, Sheng ; Zhang, Yongjie ; Gu, Jun ; Fan, Jin ; Jin, Zhengshuai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c598t-51e2062f1748c981046718f821441fe75ac207f1f6a055f5b254d976f00b81573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Angiogenesis</topic><topic>Animals</topic><topic>Barriers</topic><topic>Blood</topic><topic>Blood vessels</topic><topic>Blood-Brain Barrier - metabolism</topic><topic>Blood-spinal cord barrier</topic><topic>Care and treatment</topic><topic>Cells</topic><topic>Cytokines</topic><topic>Edema</topic><topic>Exosomes</topic><topic>Exosomes - metabolism</topic><topic>Genetic aspects</topic><topic>Health aspects</topic><topic>Infiltration</topic><topic>Inflammation</topic><topic>Inflammatory response</topic><topic>Injuries</topic><topic>Integrity</topic><topic>IRAK protein</topic><topic>Lymphocytes T</topic><topic>Mice</topic><topic>MicroRNA</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>miRNA</topic><topic>Neovascularization</topic><topic>Neutrophils</topic><topic>Parenchyma</topic><topic>Permeability</topic><topic>Proteins</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Recovery of Function</topic><topic>Regulatory T cells</topic><topic>Spinal cord injuries</topic><topic>Spinal Cord Injuries - metabolism</topic><topic>Spinal cord injury</topic><topic>T cells</topic><topic>T-Lymphocytes, Regulatory - metabolism</topic><topic>Veins &amp; arteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kong, Guang</creatorcontrib><creatorcontrib>Xiong, Wu</creatorcontrib><creatorcontrib>Li, Cong</creatorcontrib><creatorcontrib>Xiao, Chenyu</creatorcontrib><creatorcontrib>Wang, Siming</creatorcontrib><creatorcontrib>Li, Wenbo</creatorcontrib><creatorcontrib>Chen, Xiangjun</creatorcontrib><creatorcontrib>Wang, Juan</creatorcontrib><creatorcontrib>Chen, Sheng</creatorcontrib><creatorcontrib>Zhang, Yongjie</creatorcontrib><creatorcontrib>Gu, Jun</creatorcontrib><creatorcontrib>Fan, Jin</creatorcontrib><creatorcontrib>Jin, Zhengshuai</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest - Health &amp; Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of nanobiotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kong, Guang</au><au>Xiong, Wu</au><au>Li, Cong</au><au>Xiao, Chenyu</au><au>Wang, Siming</au><au>Li, Wenbo</au><au>Chen, Xiangjun</au><au>Wang, Juan</au><au>Chen, Sheng</au><au>Zhang, Yongjie</au><au>Gu, Jun</au><au>Fan, Jin</au><au>Jin, Zhengshuai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Treg cells-derived exosomes promote blood-spinal cord barrier repair and motor function recovery after spinal cord injury by delivering miR-2861</atitle><jtitle>Journal of nanobiotechnology</jtitle><addtitle>J Nanobiotechnology</addtitle><date>2023-10-04</date><risdate>2023</risdate><volume>21</volume><issue>1</issue><spage>364</spage><epage>364</epage><pages>364-364</pages><artnum>364</artnum><issn>1477-3155</issn><eissn>1477-3155</eissn><abstract>The blood-spinal cord barrier (BSCB) is a physical barrier between the blood and the spinal cord parenchyma. Current evidence suggests that the disruption of BSCB integrity after spinal cord injury can lead to secondary injuries such as spinal cord edema and excessive inflammatory response. Regulatory T (Treg) cells are effective anti-inflammatory cells that can inhibit neuroinflammation after spinal cord injury, and their infiltration after spinal cord injury exhibits the same temporal and spatial characteristics as the automatic repair of BSCB. However, few studies have assessed the relationship between Treg cells and spinal cord injury, emphasizing BSCB integrity. This study explored whether Treg affects the recovery of BSCB after SCI and the underlying mechanism. We confirmed that spinal cord angiogenesis and Treg cell infiltration occurred simultaneously after SCI. Furthermore, we observed significant effects on BSCB repair and motor function in mice by Treg cell knockout and overexpression. Subsequently, we demonstrated the presence and function of exosomes in vitro. In addition, we found that Treg cell-derived exosomes encapsulated miR-2861, and miR-2861 regulated the expression of vascular tight junction (TJs) proteins. The luciferase reporter assay confirmed the negative regulation of IRAK1 by miR-2861, and a series of rescue experiments validated the biological function of IRAKI in regulating BSCB. In summary, we demonstrated that Treg cell-derived exosomes could package and deliver miR-2861 and regulate the expression of IRAK1 to affect BSCB integrity and motor function after SCI in mice, which provides novel insights for functional repair and limiting inflammation after SCI.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>37794487</pmid><doi>10.1186/s12951-023-02089-6</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1477-3155
ispartof Journal of nanobiotechnology, 2023-10, Vol.21 (1), p.364-364, Article 364
issn 1477-3155
1477-3155
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_eda1238c467f428eb8591d9ebad23834
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central Free
subjects Angiogenesis
Animals
Barriers
Blood
Blood vessels
Blood-Brain Barrier - metabolism
Blood-spinal cord barrier
Care and treatment
Cells
Cytokines
Edema
Exosomes
Exosomes - metabolism
Genetic aspects
Health aspects
Infiltration
Inflammation
Inflammatory response
Injuries
Integrity
IRAK protein
Lymphocytes T
Mice
MicroRNA
MicroRNAs - genetics
MicroRNAs - metabolism
miRNA
Neovascularization
Neutrophils
Parenchyma
Permeability
Proteins
Rats
Rats, Sprague-Dawley
Recovery of Function
Regulatory T cells
Spinal cord injuries
Spinal Cord Injuries - metabolism
Spinal cord injury
T cells
T-Lymphocytes, Regulatory - metabolism
Veins & arteries
title Treg cells-derived exosomes promote blood-spinal cord barrier repair and motor function recovery after spinal cord injury by delivering miR-2861
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A57%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Treg%20cells-derived%20exosomes%20promote%20blood-spinal%20cord%20barrier%20repair%20and%20motor%20function%20recovery%20after%20spinal%20cord%20injury%20by%20delivering%20miR-2861&rft.jtitle=Journal%20of%20nanobiotechnology&rft.au=Kong,%20Guang&rft.date=2023-10-04&rft.volume=21&rft.issue=1&rft.spage=364&rft.epage=364&rft.pages=364-364&rft.artnum=364&rft.issn=1477-3155&rft.eissn=1477-3155&rft_id=info:doi/10.1186/s12951-023-02089-6&rft_dat=%3Cgale_doaj_%3EA767801649%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c598t-51e2062f1748c981046718f821441fe75ac207f1f6a055f5b254d976f00b81573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2877500939&rft_id=info:pmid/37794487&rft_galeid=A767801649&rfr_iscdi=true