Loading…

Polarons in axial transport in single-layer high-Tc superconductors

The temperatureT dependencies ρ(T) of normal state electric resistivitiesρ c (axial) andρ ab (in plane) of single-layer high-T c superconductors show common trends: AsT is raised, the resistivity first drops steeply before it starts rising αT above an apparent semiconductor-to-metal crossoverT cross...

Full description

Saved in:
Bibliographic Details
Published in:Open Physics 2004-06, Vol.2 (2), p.329-356
Main Authors: Andreev, Alexander, Tsintsarska, Stefka, Dimitrova-Ivanovich, Maria, Polyanski, Ivaylo, Georgiev, Mladen, Gochev, Alexander
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The temperatureT dependencies ρ(T) of normal state electric resistivitiesρ c (axial) andρ ab (in plane) of single-layer high-T c superconductors show common trends: AsT is raised, the resistivity first drops steeply before it starts rising αT above an apparent semiconductor-to-metal crossoverT cross. To analyze ρ(T) we plottT/ρ againstT at various dopingsx for bothρ c andρ ab.T/ρ is inversely proportional to the traversal time across a potential barrier as an ionic particle drifts in an electric field. We findT/ρ in good agreement with theT dependence of the quantum rate of migrating particles: AsT is raised, a zero-point rate at the lowestT is extended to a nearly flat plateau before a thermally activated branch sets in. We also find evidence for the admixture of 1- & 2-phonon absorptions below the Arrhenius range. These features shape the semiconductor-like branch below Tcross. AboveT cross a metallic-like branch sets in, its αT character deriving from the field coupling of the migrating particle. Our analysis suggests that metal physics may not suffice if ionic features play a role in transport. We attribute our conclusions to the drift of strong-coupling polarons along Cu−O bonds. These “bond polarons” originate from carrier scattering by double-well potentials associated with the bonds. A bond polaron dissociates to a free hole as it passes onto a neighboring O-O link.
ISSN:2391-5471
2391-5471
DOI:10.2478/BF02475635