Loading…

Investigation and Validation of Short-Wave Scattering in the Anisotropic Ionosphere under a Geomagnetic Field

Short-wave communication, operating within the frequency range of 3–30 MHz, is extensively employed for long-distance communication because of its extended propagation range and robustness. The ionosphere undergoes complex transformations when influenced by the geomagnetic field, evolving into an un...

Full description

Saved in:
Bibliographic Details
Published in:Atmosphere 2024-07, Vol.15 (7), p.767
Main Authors: Zhang, Zhigang, She, Jingyi, Fu, Hongwei, Zhao, Lin, Ji, Shengyun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c256t-1c82736f17c431a1303c8d25831f378c363fc59b770a4cb417ef1519cbb6bfb83
container_end_page
container_issue 7
container_start_page 767
container_title Atmosphere
container_volume 15
creator Zhang, Zhigang
She, Jingyi
Fu, Hongwei
Zhao, Lin
Ji, Shengyun
description Short-wave communication, operating within the frequency range of 3–30 MHz, is extensively employed for long-distance communication because of its extended propagation range and robustness. The ionosphere undergoes complex transformations when influenced by the geomagnetic field, evolving into an uneven and anisotropic electromagnetic medium. This complex property makes the transmission of electromagnetic fields within the ionosphere extremely complex, posing significant challenges for accurately evaluating electromagnetic scattering phenomena. To address the aforementioned challenges, this paper proposes a new method for calculating short-wave ionospheric scattering based on a complex anisotropic multilayer medium transmission matrix. Firstly, by utilizing the characteristic changes of ionospheric electron density with height, the ionization layer is divided into multiple horizontal thin layers, each with an approximately uniform electron density, forming a multilayer horizontal anisotropic structure. Subsequently, the scattering characteristics of electromagnetic waves in the ionosphere were calculated using the transmission matrix approach. The results calculated using this method are consistent with actual measurement values and superior to traditional short-wave ionospheric transmission calculation methods.
doi_str_mv 10.3390/atmos15070767
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_edd6339c0e484d9aa010e81ba70a5ef9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_edd6339c0e484d9aa010e81ba70a5ef9</doaj_id><sourcerecordid>3084737180</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-1c82736f17c431a1303c8d25831f378c363fc59b770a4cb417ef1519cbb6bfb83</originalsourceid><addsrcrecordid>eNpVUU1rGzEQXUoLCUmOuQt63lba0a60xxCa1BDIIWl7FLPSyJaxJVeSA_33VeJS2rnMJ28e73XdteCfAGb-Ges-FTFyxdWk3nXnA1fQSwnw_p_6rLsqZctbyBkGkOfdfhVfqNSwxhpSZBgd-4674E5t8uxpk3Ltf-ALsSeLtVIOcc1CZHVD7CaGkmpOh2DZKsVUDhvKxI7RUWbI7intcR2ptvVdoJ277D543BW6-pMvum93X55vv_YPj_er25uH3g7jVHth9aBg8kJZCQIFcLDaDaMG4UFpCxN4O86LUhylXaRQ5MUoZrss0-IXDRfd6oTrEm7NIYc95l8mYTBvg5TXBnNjtSNDzk1NQMtJaulmRC44abFgwx7Jzw3r4wnrkNPPY9PKbNMxx0bfANdSgRKat6v-dGVzKiWT__tVcPNqkPnPIPgNAvOEVA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084737180</pqid></control><display><type>article</type><title>Investigation and Validation of Short-Wave Scattering in the Anisotropic Ionosphere under a Geomagnetic Field</title><source>Publicly Available Content (ProQuest)</source><creator>Zhang, Zhigang ; She, Jingyi ; Fu, Hongwei ; Zhao, Lin ; Ji, Shengyun</creator><creatorcontrib>Zhang, Zhigang ; She, Jingyi ; Fu, Hongwei ; Zhao, Lin ; Ji, Shengyun</creatorcontrib><description>Short-wave communication, operating within the frequency range of 3–30 MHz, is extensively employed for long-distance communication because of its extended propagation range and robustness. The ionosphere undergoes complex transformations when influenced by the geomagnetic field, evolving into an uneven and anisotropic electromagnetic medium. This complex property makes the transmission of electromagnetic fields within the ionosphere extremely complex, posing significant challenges for accurately evaluating electromagnetic scattering phenomena. To address the aforementioned challenges, this paper proposes a new method for calculating short-wave ionospheric scattering based on a complex anisotropic multilayer medium transmission matrix. Firstly, by utilizing the characteristic changes of ionospheric electron density with height, the ionization layer is divided into multiple horizontal thin layers, each with an approximately uniform electron density, forming a multilayer horizontal anisotropic structure. Subsequently, the scattering characteristics of electromagnetic waves in the ionosphere were calculated using the transmission matrix approach. The results calculated using this method are consistent with actual measurement values and superior to traditional short-wave ionospheric transmission calculation methods.</description><identifier>ISSN: 2073-4433</identifier><identifier>EISSN: 2073-4433</identifier><identifier>DOI: 10.3390/atmos15070767</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Altitude ; Anisotropy ; Charged particles ; Electromagnetic fields ; Electromagnetic radiation ; Electromagnetic scattering ; Electron density ; Frequency ranges ; Geomagnetic field ; Geomagnetism ; Ionization ; Ionosphere ; Ionospheric electron density ; Ionospheric electrons ; ionospheric model ; Ionospheric propagation ; Methods ; Multilayers ; Plasma ; Propagation ; short-wave communication ; Thin films ; transfer matrix method ; Wave scattering</subject><ispartof>Atmosphere, 2024-07, Vol.15 (7), p.767</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c256t-1c82736f17c431a1303c8d25831f378c363fc59b770a4cb417ef1519cbb6bfb83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3084737180/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3084737180?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Zhang, Zhigang</creatorcontrib><creatorcontrib>She, Jingyi</creatorcontrib><creatorcontrib>Fu, Hongwei</creatorcontrib><creatorcontrib>Zhao, Lin</creatorcontrib><creatorcontrib>Ji, Shengyun</creatorcontrib><title>Investigation and Validation of Short-Wave Scattering in the Anisotropic Ionosphere under a Geomagnetic Field</title><title>Atmosphere</title><description>Short-wave communication, operating within the frequency range of 3–30 MHz, is extensively employed for long-distance communication because of its extended propagation range and robustness. The ionosphere undergoes complex transformations when influenced by the geomagnetic field, evolving into an uneven and anisotropic electromagnetic medium. This complex property makes the transmission of electromagnetic fields within the ionosphere extremely complex, posing significant challenges for accurately evaluating electromagnetic scattering phenomena. To address the aforementioned challenges, this paper proposes a new method for calculating short-wave ionospheric scattering based on a complex anisotropic multilayer medium transmission matrix. Firstly, by utilizing the characteristic changes of ionospheric electron density with height, the ionization layer is divided into multiple horizontal thin layers, each with an approximately uniform electron density, forming a multilayer horizontal anisotropic structure. Subsequently, the scattering characteristics of electromagnetic waves in the ionosphere were calculated using the transmission matrix approach. The results calculated using this method are consistent with actual measurement values and superior to traditional short-wave ionospheric transmission calculation methods.</description><subject>Accuracy</subject><subject>Altitude</subject><subject>Anisotropy</subject><subject>Charged particles</subject><subject>Electromagnetic fields</subject><subject>Electromagnetic radiation</subject><subject>Electromagnetic scattering</subject><subject>Electron density</subject><subject>Frequency ranges</subject><subject>Geomagnetic field</subject><subject>Geomagnetism</subject><subject>Ionization</subject><subject>Ionosphere</subject><subject>Ionospheric electron density</subject><subject>Ionospheric electrons</subject><subject>ionospheric model</subject><subject>Ionospheric propagation</subject><subject>Methods</subject><subject>Multilayers</subject><subject>Plasma</subject><subject>Propagation</subject><subject>short-wave communication</subject><subject>Thin films</subject><subject>transfer matrix method</subject><subject>Wave scattering</subject><issn>2073-4433</issn><issn>2073-4433</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVUU1rGzEQXUoLCUmOuQt63lba0a60xxCa1BDIIWl7FLPSyJaxJVeSA_33VeJS2rnMJ28e73XdteCfAGb-Ges-FTFyxdWk3nXnA1fQSwnw_p_6rLsqZctbyBkGkOfdfhVfqNSwxhpSZBgd-4674E5t8uxpk3Ltf-ALsSeLtVIOcc1CZHVD7CaGkmpOh2DZKsVUDhvKxI7RUWbI7intcR2ptvVdoJ277D543BW6-pMvum93X55vv_YPj_er25uH3g7jVHth9aBg8kJZCQIFcLDaDaMG4UFpCxN4O86LUhylXaRQ5MUoZrss0-IXDRfd6oTrEm7NIYc95l8mYTBvg5TXBnNjtSNDzk1NQMtJaulmRC44abFgwx7Jzw3r4wnrkNPPY9PKbNMxx0bfANdSgRKat6v-dGVzKiWT__tVcPNqkPnPIPgNAvOEVA</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Zhang, Zhigang</creator><creator>She, Jingyi</creator><creator>Fu, Hongwei</creator><creator>Zhao, Lin</creator><creator>Ji, Shengyun</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>SOI</scope><scope>DOA</scope></search><sort><creationdate>20240701</creationdate><title>Investigation and Validation of Short-Wave Scattering in the Anisotropic Ionosphere under a Geomagnetic Field</title><author>Zhang, Zhigang ; She, Jingyi ; Fu, Hongwei ; Zhao, Lin ; Ji, Shengyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-1c82736f17c431a1303c8d25831f378c363fc59b770a4cb417ef1519cbb6bfb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Altitude</topic><topic>Anisotropy</topic><topic>Charged particles</topic><topic>Electromagnetic fields</topic><topic>Electromagnetic radiation</topic><topic>Electromagnetic scattering</topic><topic>Electron density</topic><topic>Frequency ranges</topic><topic>Geomagnetic field</topic><topic>Geomagnetism</topic><topic>Ionization</topic><topic>Ionosphere</topic><topic>Ionospheric electron density</topic><topic>Ionospheric electrons</topic><topic>ionospheric model</topic><topic>Ionospheric propagation</topic><topic>Methods</topic><topic>Multilayers</topic><topic>Plasma</topic><topic>Propagation</topic><topic>short-wave communication</topic><topic>Thin films</topic><topic>transfer matrix method</topic><topic>Wave scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zhigang</creatorcontrib><creatorcontrib>She, Jingyi</creatorcontrib><creatorcontrib>Fu, Hongwei</creatorcontrib><creatorcontrib>Zhao, Lin</creatorcontrib><creatorcontrib>Ji, Shengyun</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Earth, Atmospheric &amp; Aquatic Science</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environment Abstracts</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Atmosphere</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zhigang</au><au>She, Jingyi</au><au>Fu, Hongwei</au><au>Zhao, Lin</au><au>Ji, Shengyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation and Validation of Short-Wave Scattering in the Anisotropic Ionosphere under a Geomagnetic Field</atitle><jtitle>Atmosphere</jtitle><date>2024-07-01</date><risdate>2024</risdate><volume>15</volume><issue>7</issue><spage>767</spage><pages>767-</pages><issn>2073-4433</issn><eissn>2073-4433</eissn><abstract>Short-wave communication, operating within the frequency range of 3–30 MHz, is extensively employed for long-distance communication because of its extended propagation range and robustness. The ionosphere undergoes complex transformations when influenced by the geomagnetic field, evolving into an uneven and anisotropic electromagnetic medium. This complex property makes the transmission of electromagnetic fields within the ionosphere extremely complex, posing significant challenges for accurately evaluating electromagnetic scattering phenomena. To address the aforementioned challenges, this paper proposes a new method for calculating short-wave ionospheric scattering based on a complex anisotropic multilayer medium transmission matrix. Firstly, by utilizing the characteristic changes of ionospheric electron density with height, the ionization layer is divided into multiple horizontal thin layers, each with an approximately uniform electron density, forming a multilayer horizontal anisotropic structure. Subsequently, the scattering characteristics of electromagnetic waves in the ionosphere were calculated using the transmission matrix approach. The results calculated using this method are consistent with actual measurement values and superior to traditional short-wave ionospheric transmission calculation methods.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/atmos15070767</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4433
ispartof Atmosphere, 2024-07, Vol.15 (7), p.767
issn 2073-4433
2073-4433
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_edd6339c0e484d9aa010e81ba70a5ef9
source Publicly Available Content (ProQuest)
subjects Accuracy
Altitude
Anisotropy
Charged particles
Electromagnetic fields
Electromagnetic radiation
Electromagnetic scattering
Electron density
Frequency ranges
Geomagnetic field
Geomagnetism
Ionization
Ionosphere
Ionospheric electron density
Ionospheric electrons
ionospheric model
Ionospheric propagation
Methods
Multilayers
Plasma
Propagation
short-wave communication
Thin films
transfer matrix method
Wave scattering
title Investigation and Validation of Short-Wave Scattering in the Anisotropic Ionosphere under a Geomagnetic Field
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A12%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20and%20Validation%20of%20Short-Wave%20Scattering%20in%20the%20Anisotropic%20Ionosphere%20under%20a%20Geomagnetic%20Field&rft.jtitle=Atmosphere&rft.au=Zhang,%20Zhigang&rft.date=2024-07-01&rft.volume=15&rft.issue=7&rft.spage=767&rft.pages=767-&rft.issn=2073-4433&rft.eissn=2073-4433&rft_id=info:doi/10.3390/atmos15070767&rft_dat=%3Cproquest_doaj_%3E3084737180%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c256t-1c82736f17c431a1303c8d25831f378c363fc59b770a4cb417ef1519cbb6bfb83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3084737180&rft_id=info:pmid/&rfr_iscdi=true