Loading…
Investigation and Validation of Short-Wave Scattering in the Anisotropic Ionosphere under a Geomagnetic Field
Short-wave communication, operating within the frequency range of 3–30 MHz, is extensively employed for long-distance communication because of its extended propagation range and robustness. The ionosphere undergoes complex transformations when influenced by the geomagnetic field, evolving into an un...
Saved in:
Published in: | Atmosphere 2024-07, Vol.15 (7), p.767 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c256t-1c82736f17c431a1303c8d25831f378c363fc59b770a4cb417ef1519cbb6bfb83 |
container_end_page | |
container_issue | 7 |
container_start_page | 767 |
container_title | Atmosphere |
container_volume | 15 |
creator | Zhang, Zhigang She, Jingyi Fu, Hongwei Zhao, Lin Ji, Shengyun |
description | Short-wave communication, operating within the frequency range of 3–30 MHz, is extensively employed for long-distance communication because of its extended propagation range and robustness. The ionosphere undergoes complex transformations when influenced by the geomagnetic field, evolving into an uneven and anisotropic electromagnetic medium. This complex property makes the transmission of electromagnetic fields within the ionosphere extremely complex, posing significant challenges for accurately evaluating electromagnetic scattering phenomena. To address the aforementioned challenges, this paper proposes a new method for calculating short-wave ionospheric scattering based on a complex anisotropic multilayer medium transmission matrix. Firstly, by utilizing the characteristic changes of ionospheric electron density with height, the ionization layer is divided into multiple horizontal thin layers, each with an approximately uniform electron density, forming a multilayer horizontal anisotropic structure. Subsequently, the scattering characteristics of electromagnetic waves in the ionosphere were calculated using the transmission matrix approach. The results calculated using this method are consistent with actual measurement values and superior to traditional short-wave ionospheric transmission calculation methods. |
doi_str_mv | 10.3390/atmos15070767 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_edd6339c0e484d9aa010e81ba70a5ef9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_edd6339c0e484d9aa010e81ba70a5ef9</doaj_id><sourcerecordid>3084737180</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-1c82736f17c431a1303c8d25831f378c363fc59b770a4cb417ef1519cbb6bfb83</originalsourceid><addsrcrecordid>eNpVUU1rGzEQXUoLCUmOuQt63lba0a60xxCa1BDIIWl7FLPSyJaxJVeSA_33VeJS2rnMJ28e73XdteCfAGb-Ges-FTFyxdWk3nXnA1fQSwnw_p_6rLsqZctbyBkGkOfdfhVfqNSwxhpSZBgd-4674E5t8uxpk3Ltf-ALsSeLtVIOcc1CZHVD7CaGkmpOh2DZKsVUDhvKxI7RUWbI7intcR2ptvVdoJ277D543BW6-pMvum93X55vv_YPj_er25uH3g7jVHth9aBg8kJZCQIFcLDaDaMG4UFpCxN4O86LUhylXaRQ5MUoZrss0-IXDRfd6oTrEm7NIYc95l8mYTBvg5TXBnNjtSNDzk1NQMtJaulmRC44abFgwx7Jzw3r4wnrkNPPY9PKbNMxx0bfANdSgRKat6v-dGVzKiWT__tVcPNqkPnPIPgNAvOEVA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084737180</pqid></control><display><type>article</type><title>Investigation and Validation of Short-Wave Scattering in the Anisotropic Ionosphere under a Geomagnetic Field</title><source>Publicly Available Content (ProQuest)</source><creator>Zhang, Zhigang ; She, Jingyi ; Fu, Hongwei ; Zhao, Lin ; Ji, Shengyun</creator><creatorcontrib>Zhang, Zhigang ; She, Jingyi ; Fu, Hongwei ; Zhao, Lin ; Ji, Shengyun</creatorcontrib><description>Short-wave communication, operating within the frequency range of 3–30 MHz, is extensively employed for long-distance communication because of its extended propagation range and robustness. The ionosphere undergoes complex transformations when influenced by the geomagnetic field, evolving into an uneven and anisotropic electromagnetic medium. This complex property makes the transmission of electromagnetic fields within the ionosphere extremely complex, posing significant challenges for accurately evaluating electromagnetic scattering phenomena. To address the aforementioned challenges, this paper proposes a new method for calculating short-wave ionospheric scattering based on a complex anisotropic multilayer medium transmission matrix. Firstly, by utilizing the characteristic changes of ionospheric electron density with height, the ionization layer is divided into multiple horizontal thin layers, each with an approximately uniform electron density, forming a multilayer horizontal anisotropic structure. Subsequently, the scattering characteristics of electromagnetic waves in the ionosphere were calculated using the transmission matrix approach. The results calculated using this method are consistent with actual measurement values and superior to traditional short-wave ionospheric transmission calculation methods.</description><identifier>ISSN: 2073-4433</identifier><identifier>EISSN: 2073-4433</identifier><identifier>DOI: 10.3390/atmos15070767</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Altitude ; Anisotropy ; Charged particles ; Electromagnetic fields ; Electromagnetic radiation ; Electromagnetic scattering ; Electron density ; Frequency ranges ; Geomagnetic field ; Geomagnetism ; Ionization ; Ionosphere ; Ionospheric electron density ; Ionospheric electrons ; ionospheric model ; Ionospheric propagation ; Methods ; Multilayers ; Plasma ; Propagation ; short-wave communication ; Thin films ; transfer matrix method ; Wave scattering</subject><ispartof>Atmosphere, 2024-07, Vol.15 (7), p.767</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c256t-1c82736f17c431a1303c8d25831f378c363fc59b770a4cb417ef1519cbb6bfb83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3084737180/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3084737180?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Zhang, Zhigang</creatorcontrib><creatorcontrib>She, Jingyi</creatorcontrib><creatorcontrib>Fu, Hongwei</creatorcontrib><creatorcontrib>Zhao, Lin</creatorcontrib><creatorcontrib>Ji, Shengyun</creatorcontrib><title>Investigation and Validation of Short-Wave Scattering in the Anisotropic Ionosphere under a Geomagnetic Field</title><title>Atmosphere</title><description>Short-wave communication, operating within the frequency range of 3–30 MHz, is extensively employed for long-distance communication because of its extended propagation range and robustness. The ionosphere undergoes complex transformations when influenced by the geomagnetic field, evolving into an uneven and anisotropic electromagnetic medium. This complex property makes the transmission of electromagnetic fields within the ionosphere extremely complex, posing significant challenges for accurately evaluating electromagnetic scattering phenomena. To address the aforementioned challenges, this paper proposes a new method for calculating short-wave ionospheric scattering based on a complex anisotropic multilayer medium transmission matrix. Firstly, by utilizing the characteristic changes of ionospheric electron density with height, the ionization layer is divided into multiple horizontal thin layers, each with an approximately uniform electron density, forming a multilayer horizontal anisotropic structure. Subsequently, the scattering characteristics of electromagnetic waves in the ionosphere were calculated using the transmission matrix approach. The results calculated using this method are consistent with actual measurement values and superior to traditional short-wave ionospheric transmission calculation methods.</description><subject>Accuracy</subject><subject>Altitude</subject><subject>Anisotropy</subject><subject>Charged particles</subject><subject>Electromagnetic fields</subject><subject>Electromagnetic radiation</subject><subject>Electromagnetic scattering</subject><subject>Electron density</subject><subject>Frequency ranges</subject><subject>Geomagnetic field</subject><subject>Geomagnetism</subject><subject>Ionization</subject><subject>Ionosphere</subject><subject>Ionospheric electron density</subject><subject>Ionospheric electrons</subject><subject>ionospheric model</subject><subject>Ionospheric propagation</subject><subject>Methods</subject><subject>Multilayers</subject><subject>Plasma</subject><subject>Propagation</subject><subject>short-wave communication</subject><subject>Thin films</subject><subject>transfer matrix method</subject><subject>Wave scattering</subject><issn>2073-4433</issn><issn>2073-4433</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVUU1rGzEQXUoLCUmOuQt63lba0a60xxCa1BDIIWl7FLPSyJaxJVeSA_33VeJS2rnMJ28e73XdteCfAGb-Ges-FTFyxdWk3nXnA1fQSwnw_p_6rLsqZctbyBkGkOfdfhVfqNSwxhpSZBgd-4674E5t8uxpk3Ltf-ALsSeLtVIOcc1CZHVD7CaGkmpOh2DZKsVUDhvKxI7RUWbI7intcR2ptvVdoJ277D543BW6-pMvum93X55vv_YPj_er25uH3g7jVHth9aBg8kJZCQIFcLDaDaMG4UFpCxN4O86LUhylXaRQ5MUoZrss0-IXDRfd6oTrEm7NIYc95l8mYTBvg5TXBnNjtSNDzk1NQMtJaulmRC44abFgwx7Jzw3r4wnrkNPPY9PKbNMxx0bfANdSgRKat6v-dGVzKiWT__tVcPNqkPnPIPgNAvOEVA</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Zhang, Zhigang</creator><creator>She, Jingyi</creator><creator>Fu, Hongwei</creator><creator>Zhao, Lin</creator><creator>Ji, Shengyun</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>SOI</scope><scope>DOA</scope></search><sort><creationdate>20240701</creationdate><title>Investigation and Validation of Short-Wave Scattering in the Anisotropic Ionosphere under a Geomagnetic Field</title><author>Zhang, Zhigang ; She, Jingyi ; Fu, Hongwei ; Zhao, Lin ; Ji, Shengyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-1c82736f17c431a1303c8d25831f378c363fc59b770a4cb417ef1519cbb6bfb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Altitude</topic><topic>Anisotropy</topic><topic>Charged particles</topic><topic>Electromagnetic fields</topic><topic>Electromagnetic radiation</topic><topic>Electromagnetic scattering</topic><topic>Electron density</topic><topic>Frequency ranges</topic><topic>Geomagnetic field</topic><topic>Geomagnetism</topic><topic>Ionization</topic><topic>Ionosphere</topic><topic>Ionospheric electron density</topic><topic>Ionospheric electrons</topic><topic>ionospheric model</topic><topic>Ionospheric propagation</topic><topic>Methods</topic><topic>Multilayers</topic><topic>Plasma</topic><topic>Propagation</topic><topic>short-wave communication</topic><topic>Thin films</topic><topic>transfer matrix method</topic><topic>Wave scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zhigang</creatorcontrib><creatorcontrib>She, Jingyi</creatorcontrib><creatorcontrib>Fu, Hongwei</creatorcontrib><creatorcontrib>Zhao, Lin</creatorcontrib><creatorcontrib>Ji, Shengyun</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Earth, Atmospheric & Aquatic Science</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environment Abstracts</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Atmosphere</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zhigang</au><au>She, Jingyi</au><au>Fu, Hongwei</au><au>Zhao, Lin</au><au>Ji, Shengyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation and Validation of Short-Wave Scattering in the Anisotropic Ionosphere under a Geomagnetic Field</atitle><jtitle>Atmosphere</jtitle><date>2024-07-01</date><risdate>2024</risdate><volume>15</volume><issue>7</issue><spage>767</spage><pages>767-</pages><issn>2073-4433</issn><eissn>2073-4433</eissn><abstract>Short-wave communication, operating within the frequency range of 3–30 MHz, is extensively employed for long-distance communication because of its extended propagation range and robustness. The ionosphere undergoes complex transformations when influenced by the geomagnetic field, evolving into an uneven and anisotropic electromagnetic medium. This complex property makes the transmission of electromagnetic fields within the ionosphere extremely complex, posing significant challenges for accurately evaluating electromagnetic scattering phenomena. To address the aforementioned challenges, this paper proposes a new method for calculating short-wave ionospheric scattering based on a complex anisotropic multilayer medium transmission matrix. Firstly, by utilizing the characteristic changes of ionospheric electron density with height, the ionization layer is divided into multiple horizontal thin layers, each with an approximately uniform electron density, forming a multilayer horizontal anisotropic structure. Subsequently, the scattering characteristics of electromagnetic waves in the ionosphere were calculated using the transmission matrix approach. The results calculated using this method are consistent with actual measurement values and superior to traditional short-wave ionospheric transmission calculation methods.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/atmos15070767</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4433 |
ispartof | Atmosphere, 2024-07, Vol.15 (7), p.767 |
issn | 2073-4433 2073-4433 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_edd6339c0e484d9aa010e81ba70a5ef9 |
source | Publicly Available Content (ProQuest) |
subjects | Accuracy Altitude Anisotropy Charged particles Electromagnetic fields Electromagnetic radiation Electromagnetic scattering Electron density Frequency ranges Geomagnetic field Geomagnetism Ionization Ionosphere Ionospheric electron density Ionospheric electrons ionospheric model Ionospheric propagation Methods Multilayers Plasma Propagation short-wave communication Thin films transfer matrix method Wave scattering |
title | Investigation and Validation of Short-Wave Scattering in the Anisotropic Ionosphere under a Geomagnetic Field |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A12%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20and%20Validation%20of%20Short-Wave%20Scattering%20in%20the%20Anisotropic%20Ionosphere%20under%20a%20Geomagnetic%20Field&rft.jtitle=Atmosphere&rft.au=Zhang,%20Zhigang&rft.date=2024-07-01&rft.volume=15&rft.issue=7&rft.spage=767&rft.pages=767-&rft.issn=2073-4433&rft.eissn=2073-4433&rft_id=info:doi/10.3390/atmos15070767&rft_dat=%3Cproquest_doaj_%3E3084737180%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c256t-1c82736f17c431a1303c8d25831f378c363fc59b770a4cb417ef1519cbb6bfb83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3084737180&rft_id=info:pmid/&rfr_iscdi=true |