Loading…

Mechanical and Structural Characterization of Pineapple Leaf Fiber

Evidence-based research had shown that elevated alkali treatment of pineapple leaf fiber (PALF) compromised the mechanical properties of the fiber. In this work, PALF was subjected to differential alkali concentrations: 1, 3, 6, and 9% wt/wt to study the influence on the mechanical and crystal prope...

Full description

Saved in:
Bibliographic Details
Published in:Fibers 2021-08, Vol.9 (8), p.51
Main Authors: Gaba, Eric Worlawoe, Asimeng, Bernard O., Kaufmann, Elsie Effah, Katu, Solomon Kingsley, Foster, E. Johan, Tiburu, Elvis K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c361t-7e563096675a54eb469fc2a9d77ebd8e9a7eb1f524bfbbfb558e3ace5751edfd3
cites cdi_FETCH-LOGICAL-c361t-7e563096675a54eb469fc2a9d77ebd8e9a7eb1f524bfbbfb558e3ace5751edfd3
container_end_page
container_issue 8
container_start_page 51
container_title Fibers
container_volume 9
creator Gaba, Eric Worlawoe
Asimeng, Bernard O.
Kaufmann, Elsie Effah
Katu, Solomon Kingsley
Foster, E. Johan
Tiburu, Elvis K.
description Evidence-based research had shown that elevated alkali treatment of pineapple leaf fiber (PALF) compromised the mechanical properties of the fiber. In this work, PALF was subjected to differential alkali concentrations: 1, 3, 6, and 9% wt/wt to study the influence on the mechanical and crystal properties of the fiber. The crystalline and mechanical properties of untreated and alkali-treated PALF samples were investigated by X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR), and tensile testing analysis. The XRD results indicated that crystal properties of the fibers were modified with 6% wt/wt alkali-treated PALF recording the highest crystallinity and crystallite size of 76% and 24 nm, respectively. The FTIR spectra suggested that all alkali-treated PALF samples underwent lignin and hemicellulose removal to varying degrees. An increase in the crystalline properties improved the mechanical properties of the PALF treated with alkali at 6% wt/wt, which has the highest tensile strength (1620 MPa). Although the elevated alkali treatment resulted in decreased mechanical properties of PALF, crystallinity generally increased. The findings revealed that the mechanical properties of PALF not only improve with increasing crystallinity and crystallite size, but are also dependent on the intermediate bond between adjacent cellulose chains.
doi_str_mv 10.3390/fib9080051
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_edde57a2197b41edb80fa9fba4e0aeb2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_edde57a2197b41edb80fa9fba4e0aeb2</doaj_id><sourcerecordid>2565208155</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-7e563096675a54eb469fc2a9d77ebd8e9a7eb1f524bfbbfb558e3ace5751edfd3</originalsourceid><addsrcrecordid>eNpNUMFKxDAQDaLgonvxCwrehGrSNG1z1MXVhRUF9RwmycTNUpuatgf9eqMr6jDwZob33gxDyAmj55xLeuG8lrShVLA9MitoLfOq5HL_X31I5sOwpSkk4w1nM3J1h2YDnTfQZtDZ7HGMkxmnmNrFBiKYEaP_gNGHLgsue_AdQt-3mK0RXLb0GuMxOXDQDjj_wSPyvLx-Wtzm6_ub1eJynRtesTGvUVScyqqqBYgSdVlJZwqQtq5R2wYlJGROFKV2OqUQDXIwKGrB0DrLj8hq52sDbFUf_SvEdxXAq-9BiC8K4uhNiwqtTToomKx1mdS6oQ6k01AiBdRF8jrdefUxvE04jGobptil81UhKlHQhgmRWGc7lolhGCK6362Mqq-Xq7-X808FQHRQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2565208155</pqid></control><display><type>article</type><title>Mechanical and Structural Characterization of Pineapple Leaf Fiber</title><source>Publicly Available Content Database</source><source>ABI/INFORM Global</source><creator>Gaba, Eric Worlawoe ; Asimeng, Bernard O. ; Kaufmann, Elsie Effah ; Katu, Solomon Kingsley ; Foster, E. Johan ; Tiburu, Elvis K.</creator><creatorcontrib>Gaba, Eric Worlawoe ; Asimeng, Bernard O. ; Kaufmann, Elsie Effah ; Katu, Solomon Kingsley ; Foster, E. Johan ; Tiburu, Elvis K.</creatorcontrib><description>Evidence-based research had shown that elevated alkali treatment of pineapple leaf fiber (PALF) compromised the mechanical properties of the fiber. In this work, PALF was subjected to differential alkali concentrations: 1, 3, 6, and 9% wt/wt to study the influence on the mechanical and crystal properties of the fiber. The crystalline and mechanical properties of untreated and alkali-treated PALF samples were investigated by X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR), and tensile testing analysis. The XRD results indicated that crystal properties of the fibers were modified with 6% wt/wt alkali-treated PALF recording the highest crystallinity and crystallite size of 76% and 24 nm, respectively. The FTIR spectra suggested that all alkali-treated PALF samples underwent lignin and hemicellulose removal to varying degrees. An increase in the crystalline properties improved the mechanical properties of the PALF treated with alkali at 6% wt/wt, which has the highest tensile strength (1620 MPa). Although the elevated alkali treatment resulted in decreased mechanical properties of PALF, crystallinity generally increased. The findings revealed that the mechanical properties of PALF not only improve with increasing crystallinity and crystallite size, but are also dependent on the intermediate bond between adjacent cellulose chains.</description><identifier>ISSN: 2079-6439</identifier><identifier>EISSN: 2079-6439</identifier><identifier>DOI: 10.3390/fib9080051</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Cellulose ; crystal size ; Crystal structure ; Crystallinity ; Crystallites ; Data analysis ; Fourier transforms ; Infrared analysis ; Infrared spectroscopy ; Leaves ; Mechanical properties ; PINEAPPLE leaf fiber (PALF) ; Pineapples ; Radiation ; Software ; Structural analysis ; Tensile strength ; Tensile tests ; Variance analysis ; X-ray diffraction</subject><ispartof>Fibers, 2021-08, Vol.9 (8), p.51</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-7e563096675a54eb469fc2a9d77ebd8e9a7eb1f524bfbbfb558e3ace5751edfd3</citedby><cites>FETCH-LOGICAL-c361t-7e563096675a54eb469fc2a9d77ebd8e9a7eb1f524bfbbfb558e3ace5751edfd3</cites><orcidid>0000-0002-1259-5254 ; 0000-0002-4103-8510 ; 0000-0001-7675-4333</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2565208155/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2565208155?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11688,25753,27924,27925,36060,37012,44363,44590,74895,75126</link.rule.ids></links><search><creatorcontrib>Gaba, Eric Worlawoe</creatorcontrib><creatorcontrib>Asimeng, Bernard O.</creatorcontrib><creatorcontrib>Kaufmann, Elsie Effah</creatorcontrib><creatorcontrib>Katu, Solomon Kingsley</creatorcontrib><creatorcontrib>Foster, E. Johan</creatorcontrib><creatorcontrib>Tiburu, Elvis K.</creatorcontrib><title>Mechanical and Structural Characterization of Pineapple Leaf Fiber</title><title>Fibers</title><description>Evidence-based research had shown that elevated alkali treatment of pineapple leaf fiber (PALF) compromised the mechanical properties of the fiber. In this work, PALF was subjected to differential alkali concentrations: 1, 3, 6, and 9% wt/wt to study the influence on the mechanical and crystal properties of the fiber. The crystalline and mechanical properties of untreated and alkali-treated PALF samples were investigated by X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR), and tensile testing analysis. The XRD results indicated that crystal properties of the fibers were modified with 6% wt/wt alkali-treated PALF recording the highest crystallinity and crystallite size of 76% and 24 nm, respectively. The FTIR spectra suggested that all alkali-treated PALF samples underwent lignin and hemicellulose removal to varying degrees. An increase in the crystalline properties improved the mechanical properties of the PALF treated with alkali at 6% wt/wt, which has the highest tensile strength (1620 MPa). Although the elevated alkali treatment resulted in decreased mechanical properties of PALF, crystallinity generally increased. The findings revealed that the mechanical properties of PALF not only improve with increasing crystallinity and crystallite size, but are also dependent on the intermediate bond between adjacent cellulose chains.</description><subject>Cellulose</subject><subject>crystal size</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Crystallites</subject><subject>Data analysis</subject><subject>Fourier transforms</subject><subject>Infrared analysis</subject><subject>Infrared spectroscopy</subject><subject>Leaves</subject><subject>Mechanical properties</subject><subject>PINEAPPLE leaf fiber (PALF)</subject><subject>Pineapples</subject><subject>Radiation</subject><subject>Software</subject><subject>Structural analysis</subject><subject>Tensile strength</subject><subject>Tensile tests</subject><subject>Variance analysis</subject><subject>X-ray diffraction</subject><issn>2079-6439</issn><issn>2079-6439</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUMFKxDAQDaLgonvxCwrehGrSNG1z1MXVhRUF9RwmycTNUpuatgf9eqMr6jDwZob33gxDyAmj55xLeuG8lrShVLA9MitoLfOq5HL_X31I5sOwpSkk4w1nM3J1h2YDnTfQZtDZ7HGMkxmnmNrFBiKYEaP_gNGHLgsue_AdQt-3mK0RXLb0GuMxOXDQDjj_wSPyvLx-Wtzm6_ub1eJynRtesTGvUVScyqqqBYgSdVlJZwqQtq5R2wYlJGROFKV2OqUQDXIwKGrB0DrLj8hq52sDbFUf_SvEdxXAq-9BiC8K4uhNiwqtTToomKx1mdS6oQ6k01AiBdRF8jrdefUxvE04jGobptil81UhKlHQhgmRWGc7lolhGCK6362Mqq-Xq7-X808FQHRQ</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Gaba, Eric Worlawoe</creator><creator>Asimeng, Bernard O.</creator><creator>Kaufmann, Elsie Effah</creator><creator>Katu, Solomon Kingsley</creator><creator>Foster, E. Johan</creator><creator>Tiburu, Elvis K.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>M0C</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1259-5254</orcidid><orcidid>https://orcid.org/0000-0002-4103-8510</orcidid><orcidid>https://orcid.org/0000-0001-7675-4333</orcidid></search><sort><creationdate>20210801</creationdate><title>Mechanical and Structural Characterization of Pineapple Leaf Fiber</title><author>Gaba, Eric Worlawoe ; Asimeng, Bernard O. ; Kaufmann, Elsie Effah ; Katu, Solomon Kingsley ; Foster, E. Johan ; Tiburu, Elvis K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-7e563096675a54eb469fc2a9d77ebd8e9a7eb1f524bfbbfb558e3ace5751edfd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cellulose</topic><topic>crystal size</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Crystallites</topic><topic>Data analysis</topic><topic>Fourier transforms</topic><topic>Infrared analysis</topic><topic>Infrared spectroscopy</topic><topic>Leaves</topic><topic>Mechanical properties</topic><topic>PINEAPPLE leaf fiber (PALF)</topic><topic>Pineapples</topic><topic>Radiation</topic><topic>Software</topic><topic>Structural analysis</topic><topic>Tensile strength</topic><topic>Tensile tests</topic><topic>Variance analysis</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaba, Eric Worlawoe</creatorcontrib><creatorcontrib>Asimeng, Bernard O.</creatorcontrib><creatorcontrib>Kaufmann, Elsie Effah</creatorcontrib><creatorcontrib>Katu, Solomon Kingsley</creatorcontrib><creatorcontrib>Foster, E. Johan</creatorcontrib><creatorcontrib>Tiburu, Elvis K.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ABI/INFORM Collection (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals</collection><jtitle>Fibers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaba, Eric Worlawoe</au><au>Asimeng, Bernard O.</au><au>Kaufmann, Elsie Effah</au><au>Katu, Solomon Kingsley</au><au>Foster, E. Johan</au><au>Tiburu, Elvis K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical and Structural Characterization of Pineapple Leaf Fiber</atitle><jtitle>Fibers</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>9</volume><issue>8</issue><spage>51</spage><pages>51-</pages><issn>2079-6439</issn><eissn>2079-6439</eissn><abstract>Evidence-based research had shown that elevated alkali treatment of pineapple leaf fiber (PALF) compromised the mechanical properties of the fiber. In this work, PALF was subjected to differential alkali concentrations: 1, 3, 6, and 9% wt/wt to study the influence on the mechanical and crystal properties of the fiber. The crystalline and mechanical properties of untreated and alkali-treated PALF samples were investigated by X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR), and tensile testing analysis. The XRD results indicated that crystal properties of the fibers were modified with 6% wt/wt alkali-treated PALF recording the highest crystallinity and crystallite size of 76% and 24 nm, respectively. The FTIR spectra suggested that all alkali-treated PALF samples underwent lignin and hemicellulose removal to varying degrees. An increase in the crystalline properties improved the mechanical properties of the PALF treated with alkali at 6% wt/wt, which has the highest tensile strength (1620 MPa). Although the elevated alkali treatment resulted in decreased mechanical properties of PALF, crystallinity generally increased. The findings revealed that the mechanical properties of PALF not only improve with increasing crystallinity and crystallite size, but are also dependent on the intermediate bond between adjacent cellulose chains.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/fib9080051</doi><orcidid>https://orcid.org/0000-0002-1259-5254</orcidid><orcidid>https://orcid.org/0000-0002-4103-8510</orcidid><orcidid>https://orcid.org/0000-0001-7675-4333</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-6439
ispartof Fibers, 2021-08, Vol.9 (8), p.51
issn 2079-6439
2079-6439
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_edde57a2197b41edb80fa9fba4e0aeb2
source Publicly Available Content Database; ABI/INFORM Global
subjects Cellulose
crystal size
Crystal structure
Crystallinity
Crystallites
Data analysis
Fourier transforms
Infrared analysis
Infrared spectroscopy
Leaves
Mechanical properties
PINEAPPLE leaf fiber (PALF)
Pineapples
Radiation
Software
Structural analysis
Tensile strength
Tensile tests
Variance analysis
X-ray diffraction
title Mechanical and Structural Characterization of Pineapple Leaf Fiber
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A12%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20and%20Structural%20Characterization%20of%20Pineapple%20Leaf%20Fiber&rft.jtitle=Fibers&rft.au=Gaba,%20Eric%20Worlawoe&rft.date=2021-08-01&rft.volume=9&rft.issue=8&rft.spage=51&rft.pages=51-&rft.issn=2079-6439&rft.eissn=2079-6439&rft_id=info:doi/10.3390/fib9080051&rft_dat=%3Cproquest_doaj_%3E2565208155%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-7e563096675a54eb469fc2a9d77ebd8e9a7eb1f524bfbbfb558e3ace5751edfd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2565208155&rft_id=info:pmid/&rfr_iscdi=true