Loading…

Use of Human Pluripotent Stem Cells to Define Initiating Molecular Mechanisms of Cataract for Anti-Cataract Drug Discovery

Cataract is a leading cause of blindness worldwide. Currently, restoration of vision in cataract patients requires surgical removal of the cataract. Due to the large and increasing number of cataract patients, the annual cost of surgical cataract treatment amounts to billions of dollars. Limited acc...

Full description

Saved in:
Bibliographic Details
Published in:Cells (Basel, Switzerland) Switzerland), 2019-10, Vol.8 (10), p.1269
Main Authors: Dewi, Chitra Umala, O'Connor, Michael D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cataract is a leading cause of blindness worldwide. Currently, restoration of vision in cataract patients requires surgical removal of the cataract. Due to the large and increasing number of cataract patients, the annual cost of surgical cataract treatment amounts to billions of dollars. Limited access to functional human lens tissue during the early stages of cataract formation has hampered efforts to develop effective anti-cataract drugs. The ability of human pluripotent stem (PS) cells to make large numbers of normal or diseased human cell types raises the possibility that human PS cells may provide a new avenue for defining the molecular mechanisms responsible for different types of human cataract. Towards this end, methods have been established to differentiate human PS cells into both lens cells and transparent, light-focusing human micro-lenses. Sensitive and quantitative assays to measure light transmittance and focusing ability of human PS cell-derived micro-lenses have also been developed. This review will, therefore, examine how human PS cell-derived lens cells and micro-lenses might provide a new avenue for development of much-needed drugs to treat human cataract.
ISSN:2073-4409
2073-4409
DOI:10.3390/cells8101269