Loading…

Assessing the Future wind Energy Potential in Portugal Using a CMIP6 Model Ensemble and WRF High-Resolution Simulations

Future wind energy potential over Portugal is assessed, using wind speed data from a WRF regional simulation under the SSP5-8.5 scenario for 2046–2065 and 2081–2100. Data from a CMIP6 multi-model ensemble were also used to assess future changes in the Euro-Atlantic large-scale circulation. CMIP6 res...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2023-01, Vol.16 (2), p.661
Main Authors: Claro, André, Santos, João A., Carvalho, David
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Future wind energy potential over Portugal is assessed, using wind speed data from a WRF regional simulation under the SSP5-8.5 scenario for 2046–2065 and 2081–2100. Data from a CMIP6 multi-model ensemble were also used to assess future changes in the Euro-Atlantic large-scale circulation. CMIP6 results have shown a southward displacement of the mid-latitude jet stream during winter, and a northward displacement during spring, summer, and autumn, which causes the northern winds to strengthen during summer along the north-western Iberian coast. Furthermore, in 2046–2065 the wind power density (WPD) should increase between 25% and 50% off the northwest coast of Portugal and in the Serra da Estrela mountain range during summer, which is in agreement with the CMIP6 global ensemble projections. Analyses of WPD’s 2046–2065 daily variability of offshore north-western Portugal reveal a variability increase during winter, spring and summer, as well as more intense extreme WPD events, and less intense extreme events during autumn. The WPD’s 2046–2065 inter-annual variability should increase off the northwest coast, and decrease along the central western and southern coasts, whereas it should increase in the entire studied area in 2081–2100, apart from the northern mountain regions and Cape Raso.
ISSN:1996-1073
1996-1073
DOI:10.3390/en16020661