Loading…

Preliminary Evaluation of Iron Oxide Nanoparticles Radiolabeled with 68Ga and 177Lu as Potential Theranostic Agents

Theranostic radioisotope pairs such as Gallium-68 (68Ga) for Positron Emission Tomography (PET) and Lutetium-177 (177Lu) for radioisotopic therapy, in conjunction with nanoparticles (NPs), are an emerging field in the treatment of cancer. The present work aims to demonstrate the ability of condensed...

Full description

Saved in:
Bibliographic Details
Published in:Nanomaterials (Basel, Switzerland) Switzerland), 2022-07, Vol.12 (14), p.2490
Main Authors: Salvanou, Evangelia-Alexandra, Kolokithas-Ntoukas, Argiris, Liolios, Christos, Xanthopoulos, Stavros, Paravatou-Petsotas, Maria, Tsoukalas, Charalampos, Avgoustakis, Konstantinos, Bouziotis, Penelope
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3000-f460c68b911d0fa83e752f49e5782e6e53b697da1084d6112e77893a4ef90f3c3
cites cdi_FETCH-LOGICAL-c3000-f460c68b911d0fa83e752f49e5782e6e53b697da1084d6112e77893a4ef90f3c3
container_end_page
container_issue 14
container_start_page 2490
container_title Nanomaterials (Basel, Switzerland)
container_volume 12
creator Salvanou, Evangelia-Alexandra
Kolokithas-Ntoukas, Argiris
Liolios, Christos
Xanthopoulos, Stavros
Paravatou-Petsotas, Maria
Tsoukalas, Charalampos
Avgoustakis, Konstantinos
Bouziotis, Penelope
description Theranostic radioisotope pairs such as Gallium-68 (68Ga) for Positron Emission Tomography (PET) and Lutetium-177 (177Lu) for radioisotopic therapy, in conjunction with nanoparticles (NPs), are an emerging field in the treatment of cancer. The present work aims to demonstrate the ability of condensed colloidal nanocrystal clusters (co-CNCs) comprised of iron oxide nanoparticles, coated with alginic acid (MA) and stabilized by a layer of polyethylene glycol (MAPEG) to be directly radiolabeled with 68Ga and its therapeutic analog 177Lu. 68Ga/177Lu- MA and MAPEG were investigated for their in vitro stability. The biocompatibility of the non-radiolabeled nanoparticles, as well as the cytotoxicity of MA, MAPEG, and [177Lu]Lu-MAPEG were assessed on 4T1 cells. Finally, the ex vivo biodistribution of the 68Ga-labeled NPs as well as [177Lu]Lu-MAPEG was investigated in normal mice. Radiolabeling with both radioisotopes took place via a simple and direct labelling method without further purification. Hemocompatibility was verified for both NPs, while MTT studies demonstrated the non-cytotoxic profile of the nanocarriers and the dose-dependent toxicity for [177Lu]Lu-MAPEG. The radiolabeled nanoparticles mainly accumulated in RES organs. Based on our preliminary results, we conclude that MAPEG could be further investigated as a theranostic agent for PET diagnosis and therapy of cancer.
doi_str_mv 10.3390/nano12142490
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ee1d71dbf05a4325be6313ef5fe69d1d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ee1d71dbf05a4325be6313ef5fe69d1d</doaj_id><sourcerecordid>2694033506</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3000-f460c68b911d0fa83e752f49e5782e6e53b697da1084d6112e77893a4ef90f3c3</originalsourceid><addsrcrecordid>eNpdkk1vEzEQhlcIRKvSGz_AEhcOBPyx_rogVVUpkSJaoXK2ZtfjxNFmHezdFv49LolQiy9jjd95Zl5rmuYtox-FsPTTCGNinLW8tfRFc8qptovWWvbyyf2kOS9lS-uxTBgpXjcnQhpjNZOnTbnNOMRdHCH_Jlf3MMwwxTSSFMgy13jzK3ok32qbPeQp9gMW8h18TAN0OKAnD3HaEGWugcDoCdN6NRMo5DZNOE4RBnK3wVzLSy0mF-uaLG-aVwGGgufHeNb8-HJ1d_l1sbq5Xl5erBa9qMMuQqtor0xnGfM0gBGoJQ-tRakNR4VSdMpqD4ya1ivGOGptrIAWg6VB9OKsWR64PsHW7XPcVZMuQXR_Eymv3dGTQ2ReM98FKqEVXHaoBBMYZEBlPfOV9fnA2s_dDn1ffWQYnkGfv4xx49bp3lnBmeC2At4fATn9nLFMbhdLj8MAI6a5OK6s5EYryqr03X_SbZrzWL_qUdVSISRVVfXhoOpzKiVj-DcMo-5xOdzT5RB_AC3cqzg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2694033506</pqid></control><display><type>article</type><title>Preliminary Evaluation of Iron Oxide Nanoparticles Radiolabeled with 68Ga and 177Lu as Potential Theranostic Agents</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Salvanou, Evangelia-Alexandra ; Kolokithas-Ntoukas, Argiris ; Liolios, Christos ; Xanthopoulos, Stavros ; Paravatou-Petsotas, Maria ; Tsoukalas, Charalampos ; Avgoustakis, Konstantinos ; Bouziotis, Penelope</creator><creatorcontrib>Salvanou, Evangelia-Alexandra ; Kolokithas-Ntoukas, Argiris ; Liolios, Christos ; Xanthopoulos, Stavros ; Paravatou-Petsotas, Maria ; Tsoukalas, Charalampos ; Avgoustakis, Konstantinos ; Bouziotis, Penelope</creatorcontrib><description>Theranostic radioisotope pairs such as Gallium-68 (68Ga) for Positron Emission Tomography (PET) and Lutetium-177 (177Lu) for radioisotopic therapy, in conjunction with nanoparticles (NPs), are an emerging field in the treatment of cancer. The present work aims to demonstrate the ability of condensed colloidal nanocrystal clusters (co-CNCs) comprised of iron oxide nanoparticles, coated with alginic acid (MA) and stabilized by a layer of polyethylene glycol (MAPEG) to be directly radiolabeled with 68Ga and its therapeutic analog 177Lu. 68Ga/177Lu- MA and MAPEG were investigated for their in vitro stability. The biocompatibility of the non-radiolabeled nanoparticles, as well as the cytotoxicity of MA, MAPEG, and [177Lu]Lu-MAPEG were assessed on 4T1 cells. Finally, the ex vivo biodistribution of the 68Ga-labeled NPs as well as [177Lu]Lu-MAPEG was investigated in normal mice. Radiolabeling with both radioisotopes took place via a simple and direct labelling method without further purification. Hemocompatibility was verified for both NPs, while MTT studies demonstrated the non-cytotoxic profile of the nanocarriers and the dose-dependent toxicity for [177Lu]Lu-MAPEG. The radiolabeled nanoparticles mainly accumulated in RES organs. Based on our preliminary results, we conclude that MAPEG could be further investigated as a theranostic agent for PET diagnosis and therapy of cancer.</description><identifier>ISSN: 2079-4991</identifier><identifier>EISSN: 2079-4991</identifier><identifier>DOI: 10.3390/nano12142490</identifier><identifier>PMID: 35889715</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Alginic acid ; Animals ; Atoms &amp; subatomic particles ; Biocompatibility ; Biodistribution ; Cancer ; Cancer therapies ; Charged particles ; Chromatography ; condensed clusters ; Cytotoxicity ; Experiments ; Gallium ; Gallium isotopes ; Gallium-68 ; Gamma rays ; Iodine ; iron oxide nanoparticles ; Iron oxides ; Labeling ; Lutetium ; Lutetium isotopes ; Lutetium-177 ; Magnetic resonance imaging ; MTT ; Nanocrystals ; Nanoparticles ; Organs ; Polyethylene glycol ; Polyethylene terephthalate ; Positron emission tomography ; Radioisotopes ; radiolabeling ; Radiolabelling ; Tomography ; Toxicity</subject><ispartof>Nanomaterials (Basel, Switzerland), 2022-07, Vol.12 (14), p.2490</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3000-f460c68b911d0fa83e752f49e5782e6e53b697da1084d6112e77893a4ef90f3c3</citedby><cites>FETCH-LOGICAL-c3000-f460c68b911d0fa83e752f49e5782e6e53b697da1084d6112e77893a4ef90f3c3</cites><orcidid>0000-0001-6778-2201 ; 0000-0002-1909-6212 ; 0000-0003-1090-3492 ; 0000-0001-8592-0380</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2694033506/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2694033506?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Salvanou, Evangelia-Alexandra</creatorcontrib><creatorcontrib>Kolokithas-Ntoukas, Argiris</creatorcontrib><creatorcontrib>Liolios, Christos</creatorcontrib><creatorcontrib>Xanthopoulos, Stavros</creatorcontrib><creatorcontrib>Paravatou-Petsotas, Maria</creatorcontrib><creatorcontrib>Tsoukalas, Charalampos</creatorcontrib><creatorcontrib>Avgoustakis, Konstantinos</creatorcontrib><creatorcontrib>Bouziotis, Penelope</creatorcontrib><title>Preliminary Evaluation of Iron Oxide Nanoparticles Radiolabeled with 68Ga and 177Lu as Potential Theranostic Agents</title><title>Nanomaterials (Basel, Switzerland)</title><description>Theranostic radioisotope pairs such as Gallium-68 (68Ga) for Positron Emission Tomography (PET) and Lutetium-177 (177Lu) for radioisotopic therapy, in conjunction with nanoparticles (NPs), are an emerging field in the treatment of cancer. The present work aims to demonstrate the ability of condensed colloidal nanocrystal clusters (co-CNCs) comprised of iron oxide nanoparticles, coated with alginic acid (MA) and stabilized by a layer of polyethylene glycol (MAPEG) to be directly radiolabeled with 68Ga and its therapeutic analog 177Lu. 68Ga/177Lu- MA and MAPEG were investigated for their in vitro stability. The biocompatibility of the non-radiolabeled nanoparticles, as well as the cytotoxicity of MA, MAPEG, and [177Lu]Lu-MAPEG were assessed on 4T1 cells. Finally, the ex vivo biodistribution of the 68Ga-labeled NPs as well as [177Lu]Lu-MAPEG was investigated in normal mice. Radiolabeling with both radioisotopes took place via a simple and direct labelling method without further purification. Hemocompatibility was verified for both NPs, while MTT studies demonstrated the non-cytotoxic profile of the nanocarriers and the dose-dependent toxicity for [177Lu]Lu-MAPEG. The radiolabeled nanoparticles mainly accumulated in RES organs. Based on our preliminary results, we conclude that MAPEG could be further investigated as a theranostic agent for PET diagnosis and therapy of cancer.</description><subject>Alginic acid</subject><subject>Animals</subject><subject>Atoms &amp; subatomic particles</subject><subject>Biocompatibility</subject><subject>Biodistribution</subject><subject>Cancer</subject><subject>Cancer therapies</subject><subject>Charged particles</subject><subject>Chromatography</subject><subject>condensed clusters</subject><subject>Cytotoxicity</subject><subject>Experiments</subject><subject>Gallium</subject><subject>Gallium isotopes</subject><subject>Gallium-68</subject><subject>Gamma rays</subject><subject>Iodine</subject><subject>iron oxide nanoparticles</subject><subject>Iron oxides</subject><subject>Labeling</subject><subject>Lutetium</subject><subject>Lutetium isotopes</subject><subject>Lutetium-177</subject><subject>Magnetic resonance imaging</subject><subject>MTT</subject><subject>Nanocrystals</subject><subject>Nanoparticles</subject><subject>Organs</subject><subject>Polyethylene glycol</subject><subject>Polyethylene terephthalate</subject><subject>Positron emission tomography</subject><subject>Radioisotopes</subject><subject>radiolabeling</subject><subject>Radiolabelling</subject><subject>Tomography</subject><subject>Toxicity</subject><issn>2079-4991</issn><issn>2079-4991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk1vEzEQhlcIRKvSGz_AEhcOBPyx_rogVVUpkSJaoXK2ZtfjxNFmHezdFv49LolQiy9jjd95Zl5rmuYtox-FsPTTCGNinLW8tfRFc8qptovWWvbyyf2kOS9lS-uxTBgpXjcnQhpjNZOnTbnNOMRdHCH_Jlf3MMwwxTSSFMgy13jzK3ok32qbPeQp9gMW8h18TAN0OKAnD3HaEGWugcDoCdN6NRMo5DZNOE4RBnK3wVzLSy0mF-uaLG-aVwGGgufHeNb8-HJ1d_l1sbq5Xl5erBa9qMMuQqtor0xnGfM0gBGoJQ-tRakNR4VSdMpqD4ya1ivGOGptrIAWg6VB9OKsWR64PsHW7XPcVZMuQXR_Eymv3dGTQ2ReM98FKqEVXHaoBBMYZEBlPfOV9fnA2s_dDn1ffWQYnkGfv4xx49bp3lnBmeC2At4fATn9nLFMbhdLj8MAI6a5OK6s5EYryqr03X_SbZrzWL_qUdVSISRVVfXhoOpzKiVj-DcMo-5xOdzT5RB_AC3cqzg</recordid><startdate>20220720</startdate><enddate>20220720</enddate><creator>Salvanou, Evangelia-Alexandra</creator><creator>Kolokithas-Ntoukas, Argiris</creator><creator>Liolios, Christos</creator><creator>Xanthopoulos, Stavros</creator><creator>Paravatou-Petsotas, Maria</creator><creator>Tsoukalas, Charalampos</creator><creator>Avgoustakis, Konstantinos</creator><creator>Bouziotis, Penelope</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6778-2201</orcidid><orcidid>https://orcid.org/0000-0002-1909-6212</orcidid><orcidid>https://orcid.org/0000-0003-1090-3492</orcidid><orcidid>https://orcid.org/0000-0001-8592-0380</orcidid></search><sort><creationdate>20220720</creationdate><title>Preliminary Evaluation of Iron Oxide Nanoparticles Radiolabeled with 68Ga and 177Lu as Potential Theranostic Agents</title><author>Salvanou, Evangelia-Alexandra ; Kolokithas-Ntoukas, Argiris ; Liolios, Christos ; Xanthopoulos, Stavros ; Paravatou-Petsotas, Maria ; Tsoukalas, Charalampos ; Avgoustakis, Konstantinos ; Bouziotis, Penelope</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3000-f460c68b911d0fa83e752f49e5782e6e53b697da1084d6112e77893a4ef90f3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alginic acid</topic><topic>Animals</topic><topic>Atoms &amp; subatomic particles</topic><topic>Biocompatibility</topic><topic>Biodistribution</topic><topic>Cancer</topic><topic>Cancer therapies</topic><topic>Charged particles</topic><topic>Chromatography</topic><topic>condensed clusters</topic><topic>Cytotoxicity</topic><topic>Experiments</topic><topic>Gallium</topic><topic>Gallium isotopes</topic><topic>Gallium-68</topic><topic>Gamma rays</topic><topic>Iodine</topic><topic>iron oxide nanoparticles</topic><topic>Iron oxides</topic><topic>Labeling</topic><topic>Lutetium</topic><topic>Lutetium isotopes</topic><topic>Lutetium-177</topic><topic>Magnetic resonance imaging</topic><topic>MTT</topic><topic>Nanocrystals</topic><topic>Nanoparticles</topic><topic>Organs</topic><topic>Polyethylene glycol</topic><topic>Polyethylene terephthalate</topic><topic>Positron emission tomography</topic><topic>Radioisotopes</topic><topic>radiolabeling</topic><topic>Radiolabelling</topic><topic>Tomography</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salvanou, Evangelia-Alexandra</creatorcontrib><creatorcontrib>Kolokithas-Ntoukas, Argiris</creatorcontrib><creatorcontrib>Liolios, Christos</creatorcontrib><creatorcontrib>Xanthopoulos, Stavros</creatorcontrib><creatorcontrib>Paravatou-Petsotas, Maria</creatorcontrib><creatorcontrib>Tsoukalas, Charalampos</creatorcontrib><creatorcontrib>Avgoustakis, Konstantinos</creatorcontrib><creatorcontrib>Bouziotis, Penelope</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Nanomaterials (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salvanou, Evangelia-Alexandra</au><au>Kolokithas-Ntoukas, Argiris</au><au>Liolios, Christos</au><au>Xanthopoulos, Stavros</au><au>Paravatou-Petsotas, Maria</au><au>Tsoukalas, Charalampos</au><au>Avgoustakis, Konstantinos</au><au>Bouziotis, Penelope</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preliminary Evaluation of Iron Oxide Nanoparticles Radiolabeled with 68Ga and 177Lu as Potential Theranostic Agents</atitle><jtitle>Nanomaterials (Basel, Switzerland)</jtitle><date>2022-07-20</date><risdate>2022</risdate><volume>12</volume><issue>14</issue><spage>2490</spage><pages>2490-</pages><issn>2079-4991</issn><eissn>2079-4991</eissn><abstract>Theranostic radioisotope pairs such as Gallium-68 (68Ga) for Positron Emission Tomography (PET) and Lutetium-177 (177Lu) for radioisotopic therapy, in conjunction with nanoparticles (NPs), are an emerging field in the treatment of cancer. The present work aims to demonstrate the ability of condensed colloidal nanocrystal clusters (co-CNCs) comprised of iron oxide nanoparticles, coated with alginic acid (MA) and stabilized by a layer of polyethylene glycol (MAPEG) to be directly radiolabeled with 68Ga and its therapeutic analog 177Lu. 68Ga/177Lu- MA and MAPEG were investigated for their in vitro stability. The biocompatibility of the non-radiolabeled nanoparticles, as well as the cytotoxicity of MA, MAPEG, and [177Lu]Lu-MAPEG were assessed on 4T1 cells. Finally, the ex vivo biodistribution of the 68Ga-labeled NPs as well as [177Lu]Lu-MAPEG was investigated in normal mice. Radiolabeling with both radioisotopes took place via a simple and direct labelling method without further purification. Hemocompatibility was verified for both NPs, while MTT studies demonstrated the non-cytotoxic profile of the nanocarriers and the dose-dependent toxicity for [177Lu]Lu-MAPEG. The radiolabeled nanoparticles mainly accumulated in RES organs. Based on our preliminary results, we conclude that MAPEG could be further investigated as a theranostic agent for PET diagnosis and therapy of cancer.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>35889715</pmid><doi>10.3390/nano12142490</doi><orcidid>https://orcid.org/0000-0001-6778-2201</orcidid><orcidid>https://orcid.org/0000-0002-1909-6212</orcidid><orcidid>https://orcid.org/0000-0003-1090-3492</orcidid><orcidid>https://orcid.org/0000-0001-8592-0380</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-4991
ispartof Nanomaterials (Basel, Switzerland), 2022-07, Vol.12 (14), p.2490
issn 2079-4991
2079-4991
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ee1d71dbf05a4325be6313ef5fe69d1d
source Publicly Available Content Database; PubMed Central
subjects Alginic acid
Animals
Atoms & subatomic particles
Biocompatibility
Biodistribution
Cancer
Cancer therapies
Charged particles
Chromatography
condensed clusters
Cytotoxicity
Experiments
Gallium
Gallium isotopes
Gallium-68
Gamma rays
Iodine
iron oxide nanoparticles
Iron oxides
Labeling
Lutetium
Lutetium isotopes
Lutetium-177
Magnetic resonance imaging
MTT
Nanocrystals
Nanoparticles
Organs
Polyethylene glycol
Polyethylene terephthalate
Positron emission tomography
Radioisotopes
radiolabeling
Radiolabelling
Tomography
Toxicity
title Preliminary Evaluation of Iron Oxide Nanoparticles Radiolabeled with 68Ga and 177Lu as Potential Theranostic Agents
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T12%3A14%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preliminary%20Evaluation%20of%20Iron%20Oxide%20Nanoparticles%20Radiolabeled%20with%2068Ga%20and%20177Lu%20as%20Potential%20Theranostic%20Agents&rft.jtitle=Nanomaterials%20(Basel,%20Switzerland)&rft.au=Salvanou,%20Evangelia-Alexandra&rft.date=2022-07-20&rft.volume=12&rft.issue=14&rft.spage=2490&rft.pages=2490-&rft.issn=2079-4991&rft.eissn=2079-4991&rft_id=info:doi/10.3390/nano12142490&rft_dat=%3Cproquest_doaj_%3E2694033506%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3000-f460c68b911d0fa83e752f49e5782e6e53b697da1084d6112e77893a4ef90f3c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2694033506&rft_id=info:pmid/35889715&rfr_iscdi=true