Loading…
Segmenting Star Images with Complex Backgrounds Based on Correlation between Objects and 1D Gaussian Morphology
Space object recognition in high Earth orbits (between 2000 km and 36,000 km) is affected by moonlight and clouds, resulting in some bright or saturated image areas and uneven image backgrounds. It is difficult to separate dim objects from complex backgrounds with gray thresholding methods alone. In...
Saved in:
Published in: | Applied sciences 2021-05, Vol.11 (9), p.3763 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Space object recognition in high Earth orbits (between 2000 km and 36,000 km) is affected by moonlight and clouds, resulting in some bright or saturated image areas and uneven image backgrounds. It is difficult to separate dim objects from complex backgrounds with gray thresholding methods alone. In this paper, we present a segmentation method of star images with complex backgrounds based on correlation between space objects and one-dimensional (1D) Gaussian morphology, and the focus is shifted from gray thresholding to correlation thresholding. We build 1D Gaussian functions with five consecutive column data of an image as a group based on minimum mean square error rules, and the correlation coefficients between the column data and functions are used to extract objects and stars. Then, lateral correlation is repeated around the identified objects and stars to ensure their complete outlines, and false alarms are removed by setting two values, the standard deviation and the ratio of mean square error and variance. We analyze the selection process of each thresholding, and experimental results demonstrate that our proposed correlation segmentation method has obvious advantages in complex backgrounds, which is attractive for object detection and tracking on a cloudy and bright moonlit night. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app11093763 |