Loading…
Temperature-Based Long-Term Stabilization of Photoacoustic Gas Sensors Using Machine Learning
In this study, we address the challenge of estimating the resonance frequency of a photoacoustic detector (PAD) gas cell under varying temperature conditions, which is crucial for improving the accuracy of gas concentration measurements. We introduce a novel approach that uses a long short-term memo...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2024-11, Vol.24 (23), p.7518 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2795-868ec1eb9deb39a432c8bb4643ba1d1583b5674c3af49acebefe1d5b962c74c03 |
container_end_page | |
container_issue | 23 |
container_start_page | 7518 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 24 |
creator | Borozdin, Pavel Erushin, Evgenii Kozmin, Artem Bednyakova, Anastasia Miroshnichenko, Ilya Kostyukova, Nadezhda Boyko, Andrey Redyuk, Alexey |
description | In this study, we address the challenge of estimating the resonance frequency of a photoacoustic detector (PAD) gas cell under varying temperature conditions, which is crucial for improving the accuracy of gas concentration measurements. We introduce a novel approach that uses a long short-term memory network and a self-attention mechanism to model resonance frequency shifts based on temperature data. To investigate the impact of the gas mixture temperature on the resonance frequency, we modified the PAD to include an internal temperature sensor. Our experiments involved multiple heating and cooling cycles with varying methane concentrations, resulting in a comprehensive dataset of temperature and resonance frequency measurements. The proposed models were trained and validated on this dataset, and the results demonstrate real-time prediction capabilities with a mean absolute error of less than 1 Hz for frequency shifts exceeding 30 Hz over four-hour periods. This approach allows continuous, real-time tracking of the resonance frequency without interrupting the laser operation, significantly enhancing gas concentration measurements and contributing to the long-term stabilization of the sensor. The results suggest that the proposed approach is effective in managing temperature-induced frequency shifts, making it a valuable tool for improving the accuracy and stability of gas sensors in practical applications. |
doi_str_mv | 10.3390/s24237518 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ee252ab05fa44487bc84ed536e7eefe1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A819955274</galeid><doaj_id>oai_doaj_org_article_ee252ab05fa44487bc84ed536e7eefe1</doaj_id><sourcerecordid>A819955274</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2795-868ec1eb9deb39a432c8bb4643ba1d1583b5674c3af49acebefe1d5b962c74c03</originalsourceid><addsrcrecordid>eNpdkl1rFDEUhgdRbK1e-AdkwBu9mJrPmeRKatFaWFHo9lLCSebMbpaZZE1mBf31Zt26tJKLhDfvec4Hp6peUnLOuSbvMhOMd5KqR9UpFUw0ijHy-N77pHqW84YQxjlXT6sTrlvVEilPq-9LnLaYYN4lbD5Axr5exLBqlpim-mYG60f_G2YfQx2H-ts6zhFc3OXZu_oKcn2DIceU69vsw6r-Am7tA9YLhBSK8Lx6MsCY8cXdfVbdfvq4vPzcLL5eXV9eLBrHOi0b1Sp0FK3u0XINgjOnrBWt4BZoT6XiVradcBwGocGhxQFpL61umSsy4WfV9YHbR9iYbfITpF8mgjd_hZhWBlIpeUSDyCQDS-QAQgjVWacE9pK32OEeW1jvD6ztzk7YOwxzgvEB9OFP8Guzij8Npa0QRMlCeHNHSPHHDvNsJp8djiMELKMznIpWUyVJV6yv_7Nu4i6FMqu9S1CpFWfFdX5wraB04MMQS2JXTo-TdzHg4It-oajWUrJOlIC3hwCXYs4Jh2P5lJj9ypjjyhTvq_v9Hp3_doT_ATdsvFU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3144159832</pqid></control><display><type>article</type><title>Temperature-Based Long-Term Stabilization of Photoacoustic Gas Sensors Using Machine Learning</title><source>PubMed Central Free</source><source>Publicly Available Content Database</source><creator>Borozdin, Pavel ; Erushin, Evgenii ; Kozmin, Artem ; Bednyakova, Anastasia ; Miroshnichenko, Ilya ; Kostyukova, Nadezhda ; Boyko, Andrey ; Redyuk, Alexey</creator><creatorcontrib>Borozdin, Pavel ; Erushin, Evgenii ; Kozmin, Artem ; Bednyakova, Anastasia ; Miroshnichenko, Ilya ; Kostyukova, Nadezhda ; Boyko, Andrey ; Redyuk, Alexey</creatorcontrib><description>In this study, we address the challenge of estimating the resonance frequency of a photoacoustic detector (PAD) gas cell under varying temperature conditions, which is crucial for improving the accuracy of gas concentration measurements. We introduce a novel approach that uses a long short-term memory network and a self-attention mechanism to model resonance frequency shifts based on temperature data. To investigate the impact of the gas mixture temperature on the resonance frequency, we modified the PAD to include an internal temperature sensor. Our experiments involved multiple heating and cooling cycles with varying methane concentrations, resulting in a comprehensive dataset of temperature and resonance frequency measurements. The proposed models were trained and validated on this dataset, and the results demonstrate real-time prediction capabilities with a mean absolute error of less than 1 Hz for frequency shifts exceeding 30 Hz over four-hour periods. This approach allows continuous, real-time tracking of the resonance frequency without interrupting the laser operation, significantly enhancing gas concentration measurements and contributing to the long-term stabilization of the sensor. The results suggest that the proposed approach is effective in managing temperature-induced frequency shifts, making it a valuable tool for improving the accuracy and stability of gas sensors in practical applications.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s24237518</identifier><identifier>PMID: 39686055</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Acoustics ; Air pollution ; Control algorithms ; Fourier transforms ; Gases ; Investigations ; Lasers ; long short-term memory networks ; Machine learning ; Methane ; Neural networks ; optical sensing ; Outdoor air quality ; photoacoustic gas sensor ; photoacoustic spectroscopy ; Sensors ; Temperature</subject><ispartof>Sensors (Basel, Switzerland), 2024-11, Vol.24 (23), p.7518</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2795-868ec1eb9deb39a432c8bb4643ba1d1583b5674c3af49acebefe1d5b962c74c03</cites><orcidid>0009-0004-0321-7093 ; 0000-0003-3548-0959 ; 0000-0003-4125-7307 ; 0009-0004-9125-7721 ; 0000-0003-0252-8477 ; 0000-0002-7820-8990 ; 0000-0002-4990-3759</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3144159832/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3144159832?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39686055$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Borozdin, Pavel</creatorcontrib><creatorcontrib>Erushin, Evgenii</creatorcontrib><creatorcontrib>Kozmin, Artem</creatorcontrib><creatorcontrib>Bednyakova, Anastasia</creatorcontrib><creatorcontrib>Miroshnichenko, Ilya</creatorcontrib><creatorcontrib>Kostyukova, Nadezhda</creatorcontrib><creatorcontrib>Boyko, Andrey</creatorcontrib><creatorcontrib>Redyuk, Alexey</creatorcontrib><title>Temperature-Based Long-Term Stabilization of Photoacoustic Gas Sensors Using Machine Learning</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>In this study, we address the challenge of estimating the resonance frequency of a photoacoustic detector (PAD) gas cell under varying temperature conditions, which is crucial for improving the accuracy of gas concentration measurements. We introduce a novel approach that uses a long short-term memory network and a self-attention mechanism to model resonance frequency shifts based on temperature data. To investigate the impact of the gas mixture temperature on the resonance frequency, we modified the PAD to include an internal temperature sensor. Our experiments involved multiple heating and cooling cycles with varying methane concentrations, resulting in a comprehensive dataset of temperature and resonance frequency measurements. The proposed models were trained and validated on this dataset, and the results demonstrate real-time prediction capabilities with a mean absolute error of less than 1 Hz for frequency shifts exceeding 30 Hz over four-hour periods. This approach allows continuous, real-time tracking of the resonance frequency without interrupting the laser operation, significantly enhancing gas concentration measurements and contributing to the long-term stabilization of the sensor. The results suggest that the proposed approach is effective in managing temperature-induced frequency shifts, making it a valuable tool for improving the accuracy and stability of gas sensors in practical applications.</description><subject>Accuracy</subject><subject>Acoustics</subject><subject>Air pollution</subject><subject>Control algorithms</subject><subject>Fourier transforms</subject><subject>Gases</subject><subject>Investigations</subject><subject>Lasers</subject><subject>long short-term memory networks</subject><subject>Machine learning</subject><subject>Methane</subject><subject>Neural networks</subject><subject>optical sensing</subject><subject>Outdoor air quality</subject><subject>photoacoustic gas sensor</subject><subject>photoacoustic spectroscopy</subject><subject>Sensors</subject><subject>Temperature</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkl1rFDEUhgdRbK1e-AdkwBu9mJrPmeRKatFaWFHo9lLCSebMbpaZZE1mBf31Zt26tJKLhDfvec4Hp6peUnLOuSbvMhOMd5KqR9UpFUw0ijHy-N77pHqW84YQxjlXT6sTrlvVEilPq-9LnLaYYN4lbD5Axr5exLBqlpim-mYG60f_G2YfQx2H-ts6zhFc3OXZu_oKcn2DIceU69vsw6r-Am7tA9YLhBSK8Lx6MsCY8cXdfVbdfvq4vPzcLL5eXV9eLBrHOi0b1Sp0FK3u0XINgjOnrBWt4BZoT6XiVradcBwGocGhxQFpL61umSsy4WfV9YHbR9iYbfITpF8mgjd_hZhWBlIpeUSDyCQDS-QAQgjVWacE9pK32OEeW1jvD6ztzk7YOwxzgvEB9OFP8Guzij8Npa0QRMlCeHNHSPHHDvNsJp8djiMELKMznIpWUyVJV6yv_7Nu4i6FMqu9S1CpFWfFdX5wraB04MMQS2JXTo-TdzHg4It-oajWUrJOlIC3hwCXYs4Jh2P5lJj9ypjjyhTvq_v9Hp3_doT_ATdsvFU</recordid><startdate>20241125</startdate><enddate>20241125</enddate><creator>Borozdin, Pavel</creator><creator>Erushin, Evgenii</creator><creator>Kozmin, Artem</creator><creator>Bednyakova, Anastasia</creator><creator>Miroshnichenko, Ilya</creator><creator>Kostyukova, Nadezhda</creator><creator>Boyko, Andrey</creator><creator>Redyuk, Alexey</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0004-0321-7093</orcidid><orcidid>https://orcid.org/0000-0003-3548-0959</orcidid><orcidid>https://orcid.org/0000-0003-4125-7307</orcidid><orcidid>https://orcid.org/0009-0004-9125-7721</orcidid><orcidid>https://orcid.org/0000-0003-0252-8477</orcidid><orcidid>https://orcid.org/0000-0002-7820-8990</orcidid><orcidid>https://orcid.org/0000-0002-4990-3759</orcidid></search><sort><creationdate>20241125</creationdate><title>Temperature-Based Long-Term Stabilization of Photoacoustic Gas Sensors Using Machine Learning</title><author>Borozdin, Pavel ; Erushin, Evgenii ; Kozmin, Artem ; Bednyakova, Anastasia ; Miroshnichenko, Ilya ; Kostyukova, Nadezhda ; Boyko, Andrey ; Redyuk, Alexey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2795-868ec1eb9deb39a432c8bb4643ba1d1583b5674c3af49acebefe1d5b962c74c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Acoustics</topic><topic>Air pollution</topic><topic>Control algorithms</topic><topic>Fourier transforms</topic><topic>Gases</topic><topic>Investigations</topic><topic>Lasers</topic><topic>long short-term memory networks</topic><topic>Machine learning</topic><topic>Methane</topic><topic>Neural networks</topic><topic>optical sensing</topic><topic>Outdoor air quality</topic><topic>photoacoustic gas sensor</topic><topic>photoacoustic spectroscopy</topic><topic>Sensors</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borozdin, Pavel</creatorcontrib><creatorcontrib>Erushin, Evgenii</creatorcontrib><creatorcontrib>Kozmin, Artem</creatorcontrib><creatorcontrib>Bednyakova, Anastasia</creatorcontrib><creatorcontrib>Miroshnichenko, Ilya</creatorcontrib><creatorcontrib>Kostyukova, Nadezhda</creatorcontrib><creatorcontrib>Boyko, Andrey</creatorcontrib><creatorcontrib>Redyuk, Alexey</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borozdin, Pavel</au><au>Erushin, Evgenii</au><au>Kozmin, Artem</au><au>Bednyakova, Anastasia</au><au>Miroshnichenko, Ilya</au><au>Kostyukova, Nadezhda</au><au>Boyko, Andrey</au><au>Redyuk, Alexey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature-Based Long-Term Stabilization of Photoacoustic Gas Sensors Using Machine Learning</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2024-11-25</date><risdate>2024</risdate><volume>24</volume><issue>23</issue><spage>7518</spage><pages>7518-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>In this study, we address the challenge of estimating the resonance frequency of a photoacoustic detector (PAD) gas cell under varying temperature conditions, which is crucial for improving the accuracy of gas concentration measurements. We introduce a novel approach that uses a long short-term memory network and a self-attention mechanism to model resonance frequency shifts based on temperature data. To investigate the impact of the gas mixture temperature on the resonance frequency, we modified the PAD to include an internal temperature sensor. Our experiments involved multiple heating and cooling cycles with varying methane concentrations, resulting in a comprehensive dataset of temperature and resonance frequency measurements. The proposed models were trained and validated on this dataset, and the results demonstrate real-time prediction capabilities with a mean absolute error of less than 1 Hz for frequency shifts exceeding 30 Hz over four-hour periods. This approach allows continuous, real-time tracking of the resonance frequency without interrupting the laser operation, significantly enhancing gas concentration measurements and contributing to the long-term stabilization of the sensor. The results suggest that the proposed approach is effective in managing temperature-induced frequency shifts, making it a valuable tool for improving the accuracy and stability of gas sensors in practical applications.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39686055</pmid><doi>10.3390/s24237518</doi><orcidid>https://orcid.org/0009-0004-0321-7093</orcidid><orcidid>https://orcid.org/0000-0003-3548-0959</orcidid><orcidid>https://orcid.org/0000-0003-4125-7307</orcidid><orcidid>https://orcid.org/0009-0004-9125-7721</orcidid><orcidid>https://orcid.org/0000-0003-0252-8477</orcidid><orcidid>https://orcid.org/0000-0002-7820-8990</orcidid><orcidid>https://orcid.org/0000-0002-4990-3759</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2024-11, Vol.24 (23), p.7518 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ee252ab05fa44487bc84ed536e7eefe1 |
source | PubMed Central Free; Publicly Available Content Database |
subjects | Accuracy Acoustics Air pollution Control algorithms Fourier transforms Gases Investigations Lasers long short-term memory networks Machine learning Methane Neural networks optical sensing Outdoor air quality photoacoustic gas sensor photoacoustic spectroscopy Sensors Temperature |
title | Temperature-Based Long-Term Stabilization of Photoacoustic Gas Sensors Using Machine Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A02%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature-Based%20Long-Term%20Stabilization%20of%20Photoacoustic%20Gas%20Sensors%20Using%20Machine%20Learning&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Borozdin,%20Pavel&rft.date=2024-11-25&rft.volume=24&rft.issue=23&rft.spage=7518&rft.pages=7518-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s24237518&rft_dat=%3Cgale_doaj_%3EA819955274%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2795-868ec1eb9deb39a432c8bb4643ba1d1583b5674c3af49acebefe1d5b962c74c03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3144159832&rft_id=info:pmid/39686055&rft_galeid=A819955274&rfr_iscdi=true |