Loading…

Temperature-Based Long-Term Stabilization of Photoacoustic Gas Sensors Using Machine Learning

In this study, we address the challenge of estimating the resonance frequency of a photoacoustic detector (PAD) gas cell under varying temperature conditions, which is crucial for improving the accuracy of gas concentration measurements. We introduce a novel approach that uses a long short-term memo...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2024-11, Vol.24 (23), p.7518
Main Authors: Borozdin, Pavel, Erushin, Evgenii, Kozmin, Artem, Bednyakova, Anastasia, Miroshnichenko, Ilya, Kostyukova, Nadezhda, Boyko, Andrey, Redyuk, Alexey
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2795-868ec1eb9deb39a432c8bb4643ba1d1583b5674c3af49acebefe1d5b962c74c03
container_end_page
container_issue 23
container_start_page 7518
container_title Sensors (Basel, Switzerland)
container_volume 24
creator Borozdin, Pavel
Erushin, Evgenii
Kozmin, Artem
Bednyakova, Anastasia
Miroshnichenko, Ilya
Kostyukova, Nadezhda
Boyko, Andrey
Redyuk, Alexey
description In this study, we address the challenge of estimating the resonance frequency of a photoacoustic detector (PAD) gas cell under varying temperature conditions, which is crucial for improving the accuracy of gas concentration measurements. We introduce a novel approach that uses a long short-term memory network and a self-attention mechanism to model resonance frequency shifts based on temperature data. To investigate the impact of the gas mixture temperature on the resonance frequency, we modified the PAD to include an internal temperature sensor. Our experiments involved multiple heating and cooling cycles with varying methane concentrations, resulting in a comprehensive dataset of temperature and resonance frequency measurements. The proposed models were trained and validated on this dataset, and the results demonstrate real-time prediction capabilities with a mean absolute error of less than 1 Hz for frequency shifts exceeding 30 Hz over four-hour periods. This approach allows continuous, real-time tracking of the resonance frequency without interrupting the laser operation, significantly enhancing gas concentration measurements and contributing to the long-term stabilization of the sensor. The results suggest that the proposed approach is effective in managing temperature-induced frequency shifts, making it a valuable tool for improving the accuracy and stability of gas sensors in practical applications.
doi_str_mv 10.3390/s24237518
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ee252ab05fa44487bc84ed536e7eefe1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A819955274</galeid><doaj_id>oai_doaj_org_article_ee252ab05fa44487bc84ed536e7eefe1</doaj_id><sourcerecordid>A819955274</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2795-868ec1eb9deb39a432c8bb4643ba1d1583b5674c3af49acebefe1d5b962c74c03</originalsourceid><addsrcrecordid>eNpdkl1rFDEUhgdRbK1e-AdkwBu9mJrPmeRKatFaWFHo9lLCSebMbpaZZE1mBf31Zt26tJKLhDfvec4Hp6peUnLOuSbvMhOMd5KqR9UpFUw0ijHy-N77pHqW84YQxjlXT6sTrlvVEilPq-9LnLaYYN4lbD5Axr5exLBqlpim-mYG60f_G2YfQx2H-ts6zhFc3OXZu_oKcn2DIceU69vsw6r-Am7tA9YLhBSK8Lx6MsCY8cXdfVbdfvq4vPzcLL5eXV9eLBrHOi0b1Sp0FK3u0XINgjOnrBWt4BZoT6XiVradcBwGocGhxQFpL61umSsy4WfV9YHbR9iYbfITpF8mgjd_hZhWBlIpeUSDyCQDS-QAQgjVWacE9pK32OEeW1jvD6ztzk7YOwxzgvEB9OFP8Guzij8Npa0QRMlCeHNHSPHHDvNsJp8djiMELKMznIpWUyVJV6yv_7Nu4i6FMqu9S1CpFWfFdX5wraB04MMQS2JXTo-TdzHg4It-oajWUrJOlIC3hwCXYs4Jh2P5lJj9ypjjyhTvq_v9Hp3_doT_ATdsvFU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3144159832</pqid></control><display><type>article</type><title>Temperature-Based Long-Term Stabilization of Photoacoustic Gas Sensors Using Machine Learning</title><source>PubMed Central Free</source><source>Publicly Available Content Database</source><creator>Borozdin, Pavel ; Erushin, Evgenii ; Kozmin, Artem ; Bednyakova, Anastasia ; Miroshnichenko, Ilya ; Kostyukova, Nadezhda ; Boyko, Andrey ; Redyuk, Alexey</creator><creatorcontrib>Borozdin, Pavel ; Erushin, Evgenii ; Kozmin, Artem ; Bednyakova, Anastasia ; Miroshnichenko, Ilya ; Kostyukova, Nadezhda ; Boyko, Andrey ; Redyuk, Alexey</creatorcontrib><description>In this study, we address the challenge of estimating the resonance frequency of a photoacoustic detector (PAD) gas cell under varying temperature conditions, which is crucial for improving the accuracy of gas concentration measurements. We introduce a novel approach that uses a long short-term memory network and a self-attention mechanism to model resonance frequency shifts based on temperature data. To investigate the impact of the gas mixture temperature on the resonance frequency, we modified the PAD to include an internal temperature sensor. Our experiments involved multiple heating and cooling cycles with varying methane concentrations, resulting in a comprehensive dataset of temperature and resonance frequency measurements. The proposed models were trained and validated on this dataset, and the results demonstrate real-time prediction capabilities with a mean absolute error of less than 1 Hz for frequency shifts exceeding 30 Hz over four-hour periods. This approach allows continuous, real-time tracking of the resonance frequency without interrupting the laser operation, significantly enhancing gas concentration measurements and contributing to the long-term stabilization of the sensor. The results suggest that the proposed approach is effective in managing temperature-induced frequency shifts, making it a valuable tool for improving the accuracy and stability of gas sensors in practical applications.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s24237518</identifier><identifier>PMID: 39686055</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Acoustics ; Air pollution ; Control algorithms ; Fourier transforms ; Gases ; Investigations ; Lasers ; long short-term memory networks ; Machine learning ; Methane ; Neural networks ; optical sensing ; Outdoor air quality ; photoacoustic gas sensor ; photoacoustic spectroscopy ; Sensors ; Temperature</subject><ispartof>Sensors (Basel, Switzerland), 2024-11, Vol.24 (23), p.7518</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2795-868ec1eb9deb39a432c8bb4643ba1d1583b5674c3af49acebefe1d5b962c74c03</cites><orcidid>0009-0004-0321-7093 ; 0000-0003-3548-0959 ; 0000-0003-4125-7307 ; 0009-0004-9125-7721 ; 0000-0003-0252-8477 ; 0000-0002-7820-8990 ; 0000-0002-4990-3759</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3144159832/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3144159832?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39686055$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Borozdin, Pavel</creatorcontrib><creatorcontrib>Erushin, Evgenii</creatorcontrib><creatorcontrib>Kozmin, Artem</creatorcontrib><creatorcontrib>Bednyakova, Anastasia</creatorcontrib><creatorcontrib>Miroshnichenko, Ilya</creatorcontrib><creatorcontrib>Kostyukova, Nadezhda</creatorcontrib><creatorcontrib>Boyko, Andrey</creatorcontrib><creatorcontrib>Redyuk, Alexey</creatorcontrib><title>Temperature-Based Long-Term Stabilization of Photoacoustic Gas Sensors Using Machine Learning</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>In this study, we address the challenge of estimating the resonance frequency of a photoacoustic detector (PAD) gas cell under varying temperature conditions, which is crucial for improving the accuracy of gas concentration measurements. We introduce a novel approach that uses a long short-term memory network and a self-attention mechanism to model resonance frequency shifts based on temperature data. To investigate the impact of the gas mixture temperature on the resonance frequency, we modified the PAD to include an internal temperature sensor. Our experiments involved multiple heating and cooling cycles with varying methane concentrations, resulting in a comprehensive dataset of temperature and resonance frequency measurements. The proposed models were trained and validated on this dataset, and the results demonstrate real-time prediction capabilities with a mean absolute error of less than 1 Hz for frequency shifts exceeding 30 Hz over four-hour periods. This approach allows continuous, real-time tracking of the resonance frequency without interrupting the laser operation, significantly enhancing gas concentration measurements and contributing to the long-term stabilization of the sensor. The results suggest that the proposed approach is effective in managing temperature-induced frequency shifts, making it a valuable tool for improving the accuracy and stability of gas sensors in practical applications.</description><subject>Accuracy</subject><subject>Acoustics</subject><subject>Air pollution</subject><subject>Control algorithms</subject><subject>Fourier transforms</subject><subject>Gases</subject><subject>Investigations</subject><subject>Lasers</subject><subject>long short-term memory networks</subject><subject>Machine learning</subject><subject>Methane</subject><subject>Neural networks</subject><subject>optical sensing</subject><subject>Outdoor air quality</subject><subject>photoacoustic gas sensor</subject><subject>photoacoustic spectroscopy</subject><subject>Sensors</subject><subject>Temperature</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkl1rFDEUhgdRbK1e-AdkwBu9mJrPmeRKatFaWFHo9lLCSebMbpaZZE1mBf31Zt26tJKLhDfvec4Hp6peUnLOuSbvMhOMd5KqR9UpFUw0ijHy-N77pHqW84YQxjlXT6sTrlvVEilPq-9LnLaYYN4lbD5Axr5exLBqlpim-mYG60f_G2YfQx2H-ts6zhFc3OXZu_oKcn2DIceU69vsw6r-Am7tA9YLhBSK8Lx6MsCY8cXdfVbdfvq4vPzcLL5eXV9eLBrHOi0b1Sp0FK3u0XINgjOnrBWt4BZoT6XiVradcBwGocGhxQFpL61umSsy4WfV9YHbR9iYbfITpF8mgjd_hZhWBlIpeUSDyCQDS-QAQgjVWacE9pK32OEeW1jvD6ztzk7YOwxzgvEB9OFP8Guzij8Npa0QRMlCeHNHSPHHDvNsJp8djiMELKMznIpWUyVJV6yv_7Nu4i6FMqu9S1CpFWfFdX5wraB04MMQS2JXTo-TdzHg4It-oajWUrJOlIC3hwCXYs4Jh2P5lJj9ypjjyhTvq_v9Hp3_doT_ATdsvFU</recordid><startdate>20241125</startdate><enddate>20241125</enddate><creator>Borozdin, Pavel</creator><creator>Erushin, Evgenii</creator><creator>Kozmin, Artem</creator><creator>Bednyakova, Anastasia</creator><creator>Miroshnichenko, Ilya</creator><creator>Kostyukova, Nadezhda</creator><creator>Boyko, Andrey</creator><creator>Redyuk, Alexey</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0004-0321-7093</orcidid><orcidid>https://orcid.org/0000-0003-3548-0959</orcidid><orcidid>https://orcid.org/0000-0003-4125-7307</orcidid><orcidid>https://orcid.org/0009-0004-9125-7721</orcidid><orcidid>https://orcid.org/0000-0003-0252-8477</orcidid><orcidid>https://orcid.org/0000-0002-7820-8990</orcidid><orcidid>https://orcid.org/0000-0002-4990-3759</orcidid></search><sort><creationdate>20241125</creationdate><title>Temperature-Based Long-Term Stabilization of Photoacoustic Gas Sensors Using Machine Learning</title><author>Borozdin, Pavel ; Erushin, Evgenii ; Kozmin, Artem ; Bednyakova, Anastasia ; Miroshnichenko, Ilya ; Kostyukova, Nadezhda ; Boyko, Andrey ; Redyuk, Alexey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2795-868ec1eb9deb39a432c8bb4643ba1d1583b5674c3af49acebefe1d5b962c74c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Acoustics</topic><topic>Air pollution</topic><topic>Control algorithms</topic><topic>Fourier transforms</topic><topic>Gases</topic><topic>Investigations</topic><topic>Lasers</topic><topic>long short-term memory networks</topic><topic>Machine learning</topic><topic>Methane</topic><topic>Neural networks</topic><topic>optical sensing</topic><topic>Outdoor air quality</topic><topic>photoacoustic gas sensor</topic><topic>photoacoustic spectroscopy</topic><topic>Sensors</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borozdin, Pavel</creatorcontrib><creatorcontrib>Erushin, Evgenii</creatorcontrib><creatorcontrib>Kozmin, Artem</creatorcontrib><creatorcontrib>Bednyakova, Anastasia</creatorcontrib><creatorcontrib>Miroshnichenko, Ilya</creatorcontrib><creatorcontrib>Kostyukova, Nadezhda</creatorcontrib><creatorcontrib>Boyko, Andrey</creatorcontrib><creatorcontrib>Redyuk, Alexey</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borozdin, Pavel</au><au>Erushin, Evgenii</au><au>Kozmin, Artem</au><au>Bednyakova, Anastasia</au><au>Miroshnichenko, Ilya</au><au>Kostyukova, Nadezhda</au><au>Boyko, Andrey</au><au>Redyuk, Alexey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature-Based Long-Term Stabilization of Photoacoustic Gas Sensors Using Machine Learning</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2024-11-25</date><risdate>2024</risdate><volume>24</volume><issue>23</issue><spage>7518</spage><pages>7518-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>In this study, we address the challenge of estimating the resonance frequency of a photoacoustic detector (PAD) gas cell under varying temperature conditions, which is crucial for improving the accuracy of gas concentration measurements. We introduce a novel approach that uses a long short-term memory network and a self-attention mechanism to model resonance frequency shifts based on temperature data. To investigate the impact of the gas mixture temperature on the resonance frequency, we modified the PAD to include an internal temperature sensor. Our experiments involved multiple heating and cooling cycles with varying methane concentrations, resulting in a comprehensive dataset of temperature and resonance frequency measurements. The proposed models were trained and validated on this dataset, and the results demonstrate real-time prediction capabilities with a mean absolute error of less than 1 Hz for frequency shifts exceeding 30 Hz over four-hour periods. This approach allows continuous, real-time tracking of the resonance frequency without interrupting the laser operation, significantly enhancing gas concentration measurements and contributing to the long-term stabilization of the sensor. The results suggest that the proposed approach is effective in managing temperature-induced frequency shifts, making it a valuable tool for improving the accuracy and stability of gas sensors in practical applications.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39686055</pmid><doi>10.3390/s24237518</doi><orcidid>https://orcid.org/0009-0004-0321-7093</orcidid><orcidid>https://orcid.org/0000-0003-3548-0959</orcidid><orcidid>https://orcid.org/0000-0003-4125-7307</orcidid><orcidid>https://orcid.org/0009-0004-9125-7721</orcidid><orcidid>https://orcid.org/0000-0003-0252-8477</orcidid><orcidid>https://orcid.org/0000-0002-7820-8990</orcidid><orcidid>https://orcid.org/0000-0002-4990-3759</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2024-11, Vol.24 (23), p.7518
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ee252ab05fa44487bc84ed536e7eefe1
source PubMed Central Free; Publicly Available Content Database
subjects Accuracy
Acoustics
Air pollution
Control algorithms
Fourier transforms
Gases
Investigations
Lasers
long short-term memory networks
Machine learning
Methane
Neural networks
optical sensing
Outdoor air quality
photoacoustic gas sensor
photoacoustic spectroscopy
Sensors
Temperature
title Temperature-Based Long-Term Stabilization of Photoacoustic Gas Sensors Using Machine Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A02%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature-Based%20Long-Term%20Stabilization%20of%20Photoacoustic%20Gas%20Sensors%20Using%20Machine%20Learning&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Borozdin,%20Pavel&rft.date=2024-11-25&rft.volume=24&rft.issue=23&rft.spage=7518&rft.pages=7518-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s24237518&rft_dat=%3Cgale_doaj_%3EA819955274%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2795-868ec1eb9deb39a432c8bb4643ba1d1583b5674c3af49acebefe1d5b962c74c03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3144159832&rft_id=info:pmid/39686055&rft_galeid=A819955274&rfr_iscdi=true