Loading…
Revealing an Extended Adsorption/Insertion‐Filling Sodium Storage Mechanism in Petroleum Coke‐Derived Amorphous Carbon
Amorphous carbon holds great promise as anode material for sodium‐ion batteries due to its cost‐effectiveness and good performance. However, its sodium storage mechanism, particularly the insertion process and origin of plateau capacity, remains controversial. Here, an extended adsorption/insertion‐...
Saved in:
Published in: | Advanced science 2024-11, Vol.11 (42), p.e2407538-n/a |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c4854-bf718b8fdc7845ad49425fe4fa5681685f1db46a95e6c6efc1b5f16402767ab03 |
container_end_page | n/a |
container_issue | 42 |
container_start_page | e2407538 |
container_title | Advanced science |
container_volume | 11 |
creator | Lv, Jia‐He Wang, Jing‐Song He, Bin Wu, Tao Lu, An‐Hui Zhang, Wenrui Xu, Juping Yin, Wen Hao, Guang‐Ping Li, Wen‐Cui |
description | Amorphous carbon holds great promise as anode material for sodium‐ion batteries due to its cost‐effectiveness and good performance. However, its sodium storage mechanism, particularly the insertion process and origin of plateau capacity, remains controversial. Here, an extended adsorption/insertion‐filling sodium storage mechanism is proposed using petroleum coke‐derived amorphous carbon as a multi‐microcrystalline model. Combining in situ X‐ray diffraction, in situ Raman, theoretical calculations, and neutron scattering, the effective storage form and location of sodium ions in amorphous carbon are revealed. The sodium adsorption at defect sites leads to a high‐potential sloping capacity. The sodium insertion process occurs in both the pseudo‐graphite phase (d002 > 0.370 nm) and graphite‐like phase (0.345 ≤ d002 < 0.370 nm) rather than the graphite phase, contributing to low‐potential sloping capacity. The sodium filling into accessible closed pores forms quasi‐metallic sodium clusters, contributing to plateau capacity. The threshold of the effective interlayer spacing for sodium insertion is extended to 0.345 nm, breaking the consensus of insertion interlayer threshold and enhancing understanding of closed pore filling. The extended adsorption/insertion‐filling mechanism explains the sodium storage behavior of amorphous carbon with different microstructures, providing theoretical guidance for the rational design of high‐performance amorphous carbon anodes.
The threshold of the effective interlayer spacing for sodium insertion is extended from 0.370 to 0.345 nm in petroleum coke‐derived amorphous carbon. In conjunction with the optimized structural model of amorphous carbon, an extended adsorption/insertion‐filling sodium storage mechanism is proposed, which can accurately explain the sodium storage behavior of amorphous carbon with different microstructures. |
doi_str_mv | 10.1002/advs.202407538 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ee2eac1ced0547a4b80dd46fb9e7625f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ee2eac1ced0547a4b80dd46fb9e7625f</doaj_id><sourcerecordid>3106043896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4854-bf718b8fdc7845ad49425fe4fa5681685f1db46a95e6c6efc1b5f16402767ab03</originalsourceid><addsrcrecordid>eNqFkstuEzEUhkcIRKvSLUs0Ehs2SX0fzwpFaQuRikAE2Foe-0ziMGOn9iRQVjwCz8iT4DQlatmw8pHP58-3vyieYzTGCJEzbbdpTBBhqOJUPiqOCa7liErGHt-rj4rTlFYIIcxpxbB8WhzRmkiKKD4ufnyELejO-UWpfXnxfQBvwZYTm0JcDy74s5lPEHfV75-_Ll13i86DdZu-nA8h6gWU78AstXepL50vP8AQQwe5PQ1fIS86h-i2O2eflcuwSeVUxyb4Z8WTVncJTu_Gk-Lz5cWn6dvR1fs3s-nkamSY5GzUtBWWjWytqSTj2rKaEd4CazUXEgvJW2wbJnTNQRgBrcFNnhIMkUpUukH0pJjtvTbolVpH1-t4o4J26nYixIXS-YKmAwVAQBtswCLOKs0aiaxlom1qqETeNbte713rTdODNeCHqLsH0ocd75ZqEbYKY85l_oBseHVniOF6A2lQvUsGuk57yG-jKEYCMSprkdGX_6CrsIk-v1WmSMUoqSjP1HhPmRhSitAeToOR2sVE7WKiDjHJC17cv8MB_xuKDLA98M11cPMfnZqcf5nXnDD6B_g9zPs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3127432735</pqid></control><display><type>article</type><title>Revealing an Extended Adsorption/Insertion‐Filling Sodium Storage Mechanism in Petroleum Coke‐Derived Amorphous Carbon</title><source>Wiley-Blackwell Open Access Collection</source><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Lv, Jia‐He ; Wang, Jing‐Song ; He, Bin ; Wu, Tao ; Lu, An‐Hui ; Zhang, Wenrui ; Xu, Juping ; Yin, Wen ; Hao, Guang‐Ping ; Li, Wen‐Cui</creator><creatorcontrib>Lv, Jia‐He ; Wang, Jing‐Song ; He, Bin ; Wu, Tao ; Lu, An‐Hui ; Zhang, Wenrui ; Xu, Juping ; Yin, Wen ; Hao, Guang‐Ping ; Li, Wen‐Cui</creatorcontrib><description>Amorphous carbon holds great promise as anode material for sodium‐ion batteries due to its cost‐effectiveness and good performance. However, its sodium storage mechanism, particularly the insertion process and origin of plateau capacity, remains controversial. Here, an extended adsorption/insertion‐filling sodium storage mechanism is proposed using petroleum coke‐derived amorphous carbon as a multi‐microcrystalline model. Combining in situ X‐ray diffraction, in situ Raman, theoretical calculations, and neutron scattering, the effective storage form and location of sodium ions in amorphous carbon are revealed. The sodium adsorption at defect sites leads to a high‐potential sloping capacity. The sodium insertion process occurs in both the pseudo‐graphite phase (d002 > 0.370 nm) and graphite‐like phase (0.345 ≤ d002 < 0.370 nm) rather than the graphite phase, contributing to low‐potential sloping capacity. The sodium filling into accessible closed pores forms quasi‐metallic sodium clusters, contributing to plateau capacity. The threshold of the effective interlayer spacing for sodium insertion is extended to 0.345 nm, breaking the consensus of insertion interlayer threshold and enhancing understanding of closed pore filling. The extended adsorption/insertion‐filling mechanism explains the sodium storage behavior of amorphous carbon with different microstructures, providing theoretical guidance for the rational design of high‐performance amorphous carbon anodes.
The threshold of the effective interlayer spacing for sodium insertion is extended from 0.370 to 0.345 nm in petroleum coke‐derived amorphous carbon. In conjunction with the optimized structural model of amorphous carbon, an extended adsorption/insertion‐filling sodium storage mechanism is proposed, which can accurately explain the sodium storage behavior of amorphous carbon with different microstructures.</description><identifier>ISSN: 2198-3844</identifier><identifier>EISSN: 2198-3844</identifier><identifier>DOI: 10.1002/advs.202407538</identifier><identifier>PMID: 39283031</identifier><language>eng</language><publisher>Germany: John Wiley & Sons, Inc</publisher><subject>Adsorption ; Carbon ; closed pore filling ; Energy storage ; Graphite ; interlayer insertion ; Microstructure ; petroleum coke ; Sodium ; sodium storage mechanism ; sodium‐ion batteries ; Temperature ; Transmission electron microscopy</subject><ispartof>Advanced science, 2024-11, Vol.11 (42), p.e2407538-n/a</ispartof><rights>2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH</rights><rights>2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4854-bf718b8fdc7845ad49425fe4fa5681685f1db46a95e6c6efc1b5f16402767ab03</cites><orcidid>0000-0001-8066-7144</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3127432735/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3127432735?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,11540,25730,27900,27901,36988,36989,44565,46026,46450,53765,53767,75095</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39283031$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lv, Jia‐He</creatorcontrib><creatorcontrib>Wang, Jing‐Song</creatorcontrib><creatorcontrib>He, Bin</creatorcontrib><creatorcontrib>Wu, Tao</creatorcontrib><creatorcontrib>Lu, An‐Hui</creatorcontrib><creatorcontrib>Zhang, Wenrui</creatorcontrib><creatorcontrib>Xu, Juping</creatorcontrib><creatorcontrib>Yin, Wen</creatorcontrib><creatorcontrib>Hao, Guang‐Ping</creatorcontrib><creatorcontrib>Li, Wen‐Cui</creatorcontrib><title>Revealing an Extended Adsorption/Insertion‐Filling Sodium Storage Mechanism in Petroleum Coke‐Derived Amorphous Carbon</title><title>Advanced science</title><addtitle>Adv Sci (Weinh)</addtitle><description>Amorphous carbon holds great promise as anode material for sodium‐ion batteries due to its cost‐effectiveness and good performance. However, its sodium storage mechanism, particularly the insertion process and origin of plateau capacity, remains controversial. Here, an extended adsorption/insertion‐filling sodium storage mechanism is proposed using petroleum coke‐derived amorphous carbon as a multi‐microcrystalline model. Combining in situ X‐ray diffraction, in situ Raman, theoretical calculations, and neutron scattering, the effective storage form and location of sodium ions in amorphous carbon are revealed. The sodium adsorption at defect sites leads to a high‐potential sloping capacity. The sodium insertion process occurs in both the pseudo‐graphite phase (d002 > 0.370 nm) and graphite‐like phase (0.345 ≤ d002 < 0.370 nm) rather than the graphite phase, contributing to low‐potential sloping capacity. The sodium filling into accessible closed pores forms quasi‐metallic sodium clusters, contributing to plateau capacity. The threshold of the effective interlayer spacing for sodium insertion is extended to 0.345 nm, breaking the consensus of insertion interlayer threshold and enhancing understanding of closed pore filling. The extended adsorption/insertion‐filling mechanism explains the sodium storage behavior of amorphous carbon with different microstructures, providing theoretical guidance for the rational design of high‐performance amorphous carbon anodes.
The threshold of the effective interlayer spacing for sodium insertion is extended from 0.370 to 0.345 nm in petroleum coke‐derived amorphous carbon. In conjunction with the optimized structural model of amorphous carbon, an extended adsorption/insertion‐filling sodium storage mechanism is proposed, which can accurately explain the sodium storage behavior of amorphous carbon with different microstructures.</description><subject>Adsorption</subject><subject>Carbon</subject><subject>closed pore filling</subject><subject>Energy storage</subject><subject>Graphite</subject><subject>interlayer insertion</subject><subject>Microstructure</subject><subject>petroleum coke</subject><subject>Sodium</subject><subject>sodium storage mechanism</subject><subject>sodium‐ion batteries</subject><subject>Temperature</subject><subject>Transmission electron microscopy</subject><issn>2198-3844</issn><issn>2198-3844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkstuEzEUhkcIRKvSLUs0Ehs2SX0fzwpFaQuRikAE2Foe-0ziMGOn9iRQVjwCz8iT4DQlatmw8pHP58-3vyieYzTGCJEzbbdpTBBhqOJUPiqOCa7liErGHt-rj4rTlFYIIcxpxbB8WhzRmkiKKD4ufnyELejO-UWpfXnxfQBvwZYTm0JcDy74s5lPEHfV75-_Ll13i86DdZu-nA8h6gWU78AstXepL50vP8AQQwe5PQ1fIS86h-i2O2eflcuwSeVUxyb4Z8WTVncJTu_Gk-Lz5cWn6dvR1fs3s-nkamSY5GzUtBWWjWytqSTj2rKaEd4CazUXEgvJW2wbJnTNQRgBrcFNnhIMkUpUukH0pJjtvTbolVpH1-t4o4J26nYixIXS-YKmAwVAQBtswCLOKs0aiaxlom1qqETeNbte713rTdODNeCHqLsH0ocd75ZqEbYKY85l_oBseHVniOF6A2lQvUsGuk57yG-jKEYCMSprkdGX_6CrsIk-v1WmSMUoqSjP1HhPmRhSitAeToOR2sVE7WKiDjHJC17cv8MB_xuKDLA98M11cPMfnZqcf5nXnDD6B_g9zPs</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Lv, Jia‐He</creator><creator>Wang, Jing‐Song</creator><creator>He, Bin</creator><creator>Wu, Tao</creator><creator>Lu, An‐Hui</creator><creator>Zhang, Wenrui</creator><creator>Xu, Juping</creator><creator>Yin, Wen</creator><creator>Hao, Guang‐Ping</creator><creator>Li, Wen‐Cui</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><general>Wiley</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8066-7144</orcidid></search><sort><creationdate>20241101</creationdate><title>Revealing an Extended Adsorption/Insertion‐Filling Sodium Storage Mechanism in Petroleum Coke‐Derived Amorphous Carbon</title><author>Lv, Jia‐He ; Wang, Jing‐Song ; He, Bin ; Wu, Tao ; Lu, An‐Hui ; Zhang, Wenrui ; Xu, Juping ; Yin, Wen ; Hao, Guang‐Ping ; Li, Wen‐Cui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4854-bf718b8fdc7845ad49425fe4fa5681685f1db46a95e6c6efc1b5f16402767ab03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adsorption</topic><topic>Carbon</topic><topic>closed pore filling</topic><topic>Energy storage</topic><topic>Graphite</topic><topic>interlayer insertion</topic><topic>Microstructure</topic><topic>petroleum coke</topic><topic>Sodium</topic><topic>sodium storage mechanism</topic><topic>sodium‐ion batteries</topic><topic>Temperature</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lv, Jia‐He</creatorcontrib><creatorcontrib>Wang, Jing‐Song</creatorcontrib><creatorcontrib>He, Bin</creatorcontrib><creatorcontrib>Wu, Tao</creatorcontrib><creatorcontrib>Lu, An‐Hui</creatorcontrib><creatorcontrib>Zhang, Wenrui</creatorcontrib><creatorcontrib>Xu, Juping</creatorcontrib><creatorcontrib>Yin, Wen</creatorcontrib><creatorcontrib>Hao, Guang‐Ping</creatorcontrib><creatorcontrib>Li, Wen‐Cui</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Research Library (Corporate)</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Advanced science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lv, Jia‐He</au><au>Wang, Jing‐Song</au><au>He, Bin</au><au>Wu, Tao</au><au>Lu, An‐Hui</au><au>Zhang, Wenrui</au><au>Xu, Juping</au><au>Yin, Wen</au><au>Hao, Guang‐Ping</au><au>Li, Wen‐Cui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revealing an Extended Adsorption/Insertion‐Filling Sodium Storage Mechanism in Petroleum Coke‐Derived Amorphous Carbon</atitle><jtitle>Advanced science</jtitle><addtitle>Adv Sci (Weinh)</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>11</volume><issue>42</issue><spage>e2407538</spage><epage>n/a</epage><pages>e2407538-n/a</pages><issn>2198-3844</issn><eissn>2198-3844</eissn><abstract>Amorphous carbon holds great promise as anode material for sodium‐ion batteries due to its cost‐effectiveness and good performance. However, its sodium storage mechanism, particularly the insertion process and origin of plateau capacity, remains controversial. Here, an extended adsorption/insertion‐filling sodium storage mechanism is proposed using petroleum coke‐derived amorphous carbon as a multi‐microcrystalline model. Combining in situ X‐ray diffraction, in situ Raman, theoretical calculations, and neutron scattering, the effective storage form and location of sodium ions in amorphous carbon are revealed. The sodium adsorption at defect sites leads to a high‐potential sloping capacity. The sodium insertion process occurs in both the pseudo‐graphite phase (d002 > 0.370 nm) and graphite‐like phase (0.345 ≤ d002 < 0.370 nm) rather than the graphite phase, contributing to low‐potential sloping capacity. The sodium filling into accessible closed pores forms quasi‐metallic sodium clusters, contributing to plateau capacity. The threshold of the effective interlayer spacing for sodium insertion is extended to 0.345 nm, breaking the consensus of insertion interlayer threshold and enhancing understanding of closed pore filling. The extended adsorption/insertion‐filling mechanism explains the sodium storage behavior of amorphous carbon with different microstructures, providing theoretical guidance for the rational design of high‐performance amorphous carbon anodes.
The threshold of the effective interlayer spacing for sodium insertion is extended from 0.370 to 0.345 nm in petroleum coke‐derived amorphous carbon. In conjunction with the optimized structural model of amorphous carbon, an extended adsorption/insertion‐filling sodium storage mechanism is proposed, which can accurately explain the sodium storage behavior of amorphous carbon with different microstructures.</abstract><cop>Germany</cop><pub>John Wiley & Sons, Inc</pub><pmid>39283031</pmid><doi>10.1002/advs.202407538</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8066-7144</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2198-3844 |
ispartof | Advanced science, 2024-11, Vol.11 (42), p.e2407538-n/a |
issn | 2198-3844 2198-3844 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ee2eac1ced0547a4b80dd46fb9e7625f |
source | Wiley-Blackwell Open Access Collection; Publicly Available Content Database; PubMed Central |
subjects | Adsorption Carbon closed pore filling Energy storage Graphite interlayer insertion Microstructure petroleum coke Sodium sodium storage mechanism sodium‐ion batteries Temperature Transmission electron microscopy |
title | Revealing an Extended Adsorption/Insertion‐Filling Sodium Storage Mechanism in Petroleum Coke‐Derived Amorphous Carbon |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T15%3A56%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revealing%20an%20Extended%20Adsorption/Insertion%E2%80%90Filling%20Sodium%20Storage%20Mechanism%20in%20Petroleum%20Coke%E2%80%90Derived%20Amorphous%20Carbon&rft.jtitle=Advanced%20science&rft.au=Lv,%20Jia%E2%80%90He&rft.date=2024-11-01&rft.volume=11&rft.issue=42&rft.spage=e2407538&rft.epage=n/a&rft.pages=e2407538-n/a&rft.issn=2198-3844&rft.eissn=2198-3844&rft_id=info:doi/10.1002/advs.202407538&rft_dat=%3Cproquest_doaj_%3E3106043896%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4854-bf718b8fdc7845ad49425fe4fa5681685f1db46a95e6c6efc1b5f16402767ab03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3127432735&rft_id=info:pmid/39283031&rfr_iscdi=true |