Loading…

Revealing an Extended Adsorption/Insertion‐Filling Sodium Storage Mechanism in Petroleum Coke‐Derived Amorphous Carbon

Amorphous carbon holds great promise as anode material for sodium‐ion batteries due to its cost‐effectiveness and good performance. However, its sodium storage mechanism, particularly the insertion process and origin of plateau capacity, remains controversial. Here, an extended adsorption/insertion‐...

Full description

Saved in:
Bibliographic Details
Published in:Advanced science 2024-11, Vol.11 (42), p.e2407538-n/a
Main Authors: Lv, Jia‐He, Wang, Jing‐Song, He, Bin, Wu, Tao, Lu, An‐Hui, Zhang, Wenrui, Xu, Juping, Yin, Wen, Hao, Guang‐Ping, Li, Wen‐Cui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c4854-bf718b8fdc7845ad49425fe4fa5681685f1db46a95e6c6efc1b5f16402767ab03
container_end_page n/a
container_issue 42
container_start_page e2407538
container_title Advanced science
container_volume 11
creator Lv, Jia‐He
Wang, Jing‐Song
He, Bin
Wu, Tao
Lu, An‐Hui
Zhang, Wenrui
Xu, Juping
Yin, Wen
Hao, Guang‐Ping
Li, Wen‐Cui
description Amorphous carbon holds great promise as anode material for sodium‐ion batteries due to its cost‐effectiveness and good performance. However, its sodium storage mechanism, particularly the insertion process and origin of plateau capacity, remains controversial. Here, an extended adsorption/insertion‐filling sodium storage mechanism is proposed using petroleum coke‐derived amorphous carbon as a multi‐microcrystalline model. Combining in situ X‐ray diffraction, in situ Raman, theoretical calculations, and neutron scattering, the effective storage form and location of sodium ions in amorphous carbon are revealed. The sodium adsorption at defect sites leads to a high‐potential sloping capacity. The sodium insertion process occurs in both the pseudo‐graphite phase (d002 > 0.370 nm) and graphite‐like phase (0.345 ≤ d002 < 0.370 nm) rather than the graphite phase, contributing to low‐potential sloping capacity. The sodium filling into accessible closed pores forms quasi‐metallic sodium clusters, contributing to plateau capacity. The threshold of the effective interlayer spacing for sodium insertion is extended to 0.345 nm, breaking the consensus of insertion interlayer threshold and enhancing understanding of closed pore filling. The extended adsorption/insertion‐filling mechanism explains the sodium storage behavior of amorphous carbon with different microstructures, providing theoretical guidance for the rational design of high‐performance amorphous carbon anodes. The threshold of the effective interlayer spacing for sodium insertion is extended from 0.370 to 0.345 nm in petroleum coke‐derived amorphous carbon. In conjunction with the optimized structural model of amorphous carbon, an extended adsorption/insertion‐filling sodium storage mechanism is proposed, which can accurately explain the sodium storage behavior of amorphous carbon with different microstructures.
doi_str_mv 10.1002/advs.202407538
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ee2eac1ced0547a4b80dd46fb9e7625f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ee2eac1ced0547a4b80dd46fb9e7625f</doaj_id><sourcerecordid>3106043896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4854-bf718b8fdc7845ad49425fe4fa5681685f1db46a95e6c6efc1b5f16402767ab03</originalsourceid><addsrcrecordid>eNqFkstuEzEUhkcIRKvSLUs0Ehs2SX0fzwpFaQuRikAE2Foe-0ziMGOn9iRQVjwCz8iT4DQlatmw8pHP58-3vyieYzTGCJEzbbdpTBBhqOJUPiqOCa7liErGHt-rj4rTlFYIIcxpxbB8WhzRmkiKKD4ufnyELejO-UWpfXnxfQBvwZYTm0JcDy74s5lPEHfV75-_Ll13i86DdZu-nA8h6gWU78AstXepL50vP8AQQwe5PQ1fIS86h-i2O2eflcuwSeVUxyb4Z8WTVncJTu_Gk-Lz5cWn6dvR1fs3s-nkamSY5GzUtBWWjWytqSTj2rKaEd4CazUXEgvJW2wbJnTNQRgBrcFNnhIMkUpUukH0pJjtvTbolVpH1-t4o4J26nYixIXS-YKmAwVAQBtswCLOKs0aiaxlom1qqETeNbte713rTdODNeCHqLsH0ocd75ZqEbYKY85l_oBseHVniOF6A2lQvUsGuk57yG-jKEYCMSprkdGX_6CrsIk-v1WmSMUoqSjP1HhPmRhSitAeToOR2sVE7WKiDjHJC17cv8MB_xuKDLA98M11cPMfnZqcf5nXnDD6B_g9zPs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3127432735</pqid></control><display><type>article</type><title>Revealing an Extended Adsorption/Insertion‐Filling Sodium Storage Mechanism in Petroleum Coke‐Derived Amorphous Carbon</title><source>Wiley-Blackwell Open Access Collection</source><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Lv, Jia‐He ; Wang, Jing‐Song ; He, Bin ; Wu, Tao ; Lu, An‐Hui ; Zhang, Wenrui ; Xu, Juping ; Yin, Wen ; Hao, Guang‐Ping ; Li, Wen‐Cui</creator><creatorcontrib>Lv, Jia‐He ; Wang, Jing‐Song ; He, Bin ; Wu, Tao ; Lu, An‐Hui ; Zhang, Wenrui ; Xu, Juping ; Yin, Wen ; Hao, Guang‐Ping ; Li, Wen‐Cui</creatorcontrib><description>Amorphous carbon holds great promise as anode material for sodium‐ion batteries due to its cost‐effectiveness and good performance. However, its sodium storage mechanism, particularly the insertion process and origin of plateau capacity, remains controversial. Here, an extended adsorption/insertion‐filling sodium storage mechanism is proposed using petroleum coke‐derived amorphous carbon as a multi‐microcrystalline model. Combining in situ X‐ray diffraction, in situ Raman, theoretical calculations, and neutron scattering, the effective storage form and location of sodium ions in amorphous carbon are revealed. The sodium adsorption at defect sites leads to a high‐potential sloping capacity. The sodium insertion process occurs in both the pseudo‐graphite phase (d002 &gt; 0.370 nm) and graphite‐like phase (0.345 ≤ d002 &lt; 0.370 nm) rather than the graphite phase, contributing to low‐potential sloping capacity. The sodium filling into accessible closed pores forms quasi‐metallic sodium clusters, contributing to plateau capacity. The threshold of the effective interlayer spacing for sodium insertion is extended to 0.345 nm, breaking the consensus of insertion interlayer threshold and enhancing understanding of closed pore filling. The extended adsorption/insertion‐filling mechanism explains the sodium storage behavior of amorphous carbon with different microstructures, providing theoretical guidance for the rational design of high‐performance amorphous carbon anodes. The threshold of the effective interlayer spacing for sodium insertion is extended from 0.370 to 0.345 nm in petroleum coke‐derived amorphous carbon. In conjunction with the optimized structural model of amorphous carbon, an extended adsorption/insertion‐filling sodium storage mechanism is proposed, which can accurately explain the sodium storage behavior of amorphous carbon with different microstructures.</description><identifier>ISSN: 2198-3844</identifier><identifier>EISSN: 2198-3844</identifier><identifier>DOI: 10.1002/advs.202407538</identifier><identifier>PMID: 39283031</identifier><language>eng</language><publisher>Germany: John Wiley &amp; Sons, Inc</publisher><subject>Adsorption ; Carbon ; closed pore filling ; Energy storage ; Graphite ; interlayer insertion ; Microstructure ; petroleum coke ; Sodium ; sodium storage mechanism ; sodium‐ion batteries ; Temperature ; Transmission electron microscopy</subject><ispartof>Advanced science, 2024-11, Vol.11 (42), p.e2407538-n/a</ispartof><rights>2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH</rights><rights>2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4854-bf718b8fdc7845ad49425fe4fa5681685f1db46a95e6c6efc1b5f16402767ab03</cites><orcidid>0000-0001-8066-7144</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3127432735/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3127432735?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,11540,25730,27900,27901,36988,36989,44565,46026,46450,53765,53767,75095</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39283031$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lv, Jia‐He</creatorcontrib><creatorcontrib>Wang, Jing‐Song</creatorcontrib><creatorcontrib>He, Bin</creatorcontrib><creatorcontrib>Wu, Tao</creatorcontrib><creatorcontrib>Lu, An‐Hui</creatorcontrib><creatorcontrib>Zhang, Wenrui</creatorcontrib><creatorcontrib>Xu, Juping</creatorcontrib><creatorcontrib>Yin, Wen</creatorcontrib><creatorcontrib>Hao, Guang‐Ping</creatorcontrib><creatorcontrib>Li, Wen‐Cui</creatorcontrib><title>Revealing an Extended Adsorption/Insertion‐Filling Sodium Storage Mechanism in Petroleum Coke‐Derived Amorphous Carbon</title><title>Advanced science</title><addtitle>Adv Sci (Weinh)</addtitle><description>Amorphous carbon holds great promise as anode material for sodium‐ion batteries due to its cost‐effectiveness and good performance. However, its sodium storage mechanism, particularly the insertion process and origin of plateau capacity, remains controversial. Here, an extended adsorption/insertion‐filling sodium storage mechanism is proposed using petroleum coke‐derived amorphous carbon as a multi‐microcrystalline model. Combining in situ X‐ray diffraction, in situ Raman, theoretical calculations, and neutron scattering, the effective storage form and location of sodium ions in amorphous carbon are revealed. The sodium adsorption at defect sites leads to a high‐potential sloping capacity. The sodium insertion process occurs in both the pseudo‐graphite phase (d002 &gt; 0.370 nm) and graphite‐like phase (0.345 ≤ d002 &lt; 0.370 nm) rather than the graphite phase, contributing to low‐potential sloping capacity. The sodium filling into accessible closed pores forms quasi‐metallic sodium clusters, contributing to plateau capacity. The threshold of the effective interlayer spacing for sodium insertion is extended to 0.345 nm, breaking the consensus of insertion interlayer threshold and enhancing understanding of closed pore filling. The extended adsorption/insertion‐filling mechanism explains the sodium storage behavior of amorphous carbon with different microstructures, providing theoretical guidance for the rational design of high‐performance amorphous carbon anodes. The threshold of the effective interlayer spacing for sodium insertion is extended from 0.370 to 0.345 nm in petroleum coke‐derived amorphous carbon. In conjunction with the optimized structural model of amorphous carbon, an extended adsorption/insertion‐filling sodium storage mechanism is proposed, which can accurately explain the sodium storage behavior of amorphous carbon with different microstructures.</description><subject>Adsorption</subject><subject>Carbon</subject><subject>closed pore filling</subject><subject>Energy storage</subject><subject>Graphite</subject><subject>interlayer insertion</subject><subject>Microstructure</subject><subject>petroleum coke</subject><subject>Sodium</subject><subject>sodium storage mechanism</subject><subject>sodium‐ion batteries</subject><subject>Temperature</subject><subject>Transmission electron microscopy</subject><issn>2198-3844</issn><issn>2198-3844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkstuEzEUhkcIRKvSLUs0Ehs2SX0fzwpFaQuRikAE2Foe-0ziMGOn9iRQVjwCz8iT4DQlatmw8pHP58-3vyieYzTGCJEzbbdpTBBhqOJUPiqOCa7liErGHt-rj4rTlFYIIcxpxbB8WhzRmkiKKD4ufnyELejO-UWpfXnxfQBvwZYTm0JcDy74s5lPEHfV75-_Ll13i86DdZu-nA8h6gWU78AstXepL50vP8AQQwe5PQ1fIS86h-i2O2eflcuwSeVUxyb4Z8WTVncJTu_Gk-Lz5cWn6dvR1fs3s-nkamSY5GzUtBWWjWytqSTj2rKaEd4CazUXEgvJW2wbJnTNQRgBrcFNnhIMkUpUukH0pJjtvTbolVpH1-t4o4J26nYixIXS-YKmAwVAQBtswCLOKs0aiaxlom1qqETeNbte713rTdODNeCHqLsH0ocd75ZqEbYKY85l_oBseHVniOF6A2lQvUsGuk57yG-jKEYCMSprkdGX_6CrsIk-v1WmSMUoqSjP1HhPmRhSitAeToOR2sVE7WKiDjHJC17cv8MB_xuKDLA98M11cPMfnZqcf5nXnDD6B_g9zPs</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Lv, Jia‐He</creator><creator>Wang, Jing‐Song</creator><creator>He, Bin</creator><creator>Wu, Tao</creator><creator>Lu, An‐Hui</creator><creator>Zhang, Wenrui</creator><creator>Xu, Juping</creator><creator>Yin, Wen</creator><creator>Hao, Guang‐Ping</creator><creator>Li, Wen‐Cui</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><general>Wiley</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8066-7144</orcidid></search><sort><creationdate>20241101</creationdate><title>Revealing an Extended Adsorption/Insertion‐Filling Sodium Storage Mechanism in Petroleum Coke‐Derived Amorphous Carbon</title><author>Lv, Jia‐He ; Wang, Jing‐Song ; He, Bin ; Wu, Tao ; Lu, An‐Hui ; Zhang, Wenrui ; Xu, Juping ; Yin, Wen ; Hao, Guang‐Ping ; Li, Wen‐Cui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4854-bf718b8fdc7845ad49425fe4fa5681685f1db46a95e6c6efc1b5f16402767ab03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adsorption</topic><topic>Carbon</topic><topic>closed pore filling</topic><topic>Energy storage</topic><topic>Graphite</topic><topic>interlayer insertion</topic><topic>Microstructure</topic><topic>petroleum coke</topic><topic>Sodium</topic><topic>sodium storage mechanism</topic><topic>sodium‐ion batteries</topic><topic>Temperature</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lv, Jia‐He</creatorcontrib><creatorcontrib>Wang, Jing‐Song</creatorcontrib><creatorcontrib>He, Bin</creatorcontrib><creatorcontrib>Wu, Tao</creatorcontrib><creatorcontrib>Lu, An‐Hui</creatorcontrib><creatorcontrib>Zhang, Wenrui</creatorcontrib><creatorcontrib>Xu, Juping</creatorcontrib><creatorcontrib>Yin, Wen</creatorcontrib><creatorcontrib>Hao, Guang‐Ping</creatorcontrib><creatorcontrib>Li, Wen‐Cui</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Research Library (Corporate)</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Advanced science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lv, Jia‐He</au><au>Wang, Jing‐Song</au><au>He, Bin</au><au>Wu, Tao</au><au>Lu, An‐Hui</au><au>Zhang, Wenrui</au><au>Xu, Juping</au><au>Yin, Wen</au><au>Hao, Guang‐Ping</au><au>Li, Wen‐Cui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revealing an Extended Adsorption/Insertion‐Filling Sodium Storage Mechanism in Petroleum Coke‐Derived Amorphous Carbon</atitle><jtitle>Advanced science</jtitle><addtitle>Adv Sci (Weinh)</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>11</volume><issue>42</issue><spage>e2407538</spage><epage>n/a</epage><pages>e2407538-n/a</pages><issn>2198-3844</issn><eissn>2198-3844</eissn><abstract>Amorphous carbon holds great promise as anode material for sodium‐ion batteries due to its cost‐effectiveness and good performance. However, its sodium storage mechanism, particularly the insertion process and origin of plateau capacity, remains controversial. Here, an extended adsorption/insertion‐filling sodium storage mechanism is proposed using petroleum coke‐derived amorphous carbon as a multi‐microcrystalline model. Combining in situ X‐ray diffraction, in situ Raman, theoretical calculations, and neutron scattering, the effective storage form and location of sodium ions in amorphous carbon are revealed. The sodium adsorption at defect sites leads to a high‐potential sloping capacity. The sodium insertion process occurs in both the pseudo‐graphite phase (d002 &gt; 0.370 nm) and graphite‐like phase (0.345 ≤ d002 &lt; 0.370 nm) rather than the graphite phase, contributing to low‐potential sloping capacity. The sodium filling into accessible closed pores forms quasi‐metallic sodium clusters, contributing to plateau capacity. The threshold of the effective interlayer spacing for sodium insertion is extended to 0.345 nm, breaking the consensus of insertion interlayer threshold and enhancing understanding of closed pore filling. The extended adsorption/insertion‐filling mechanism explains the sodium storage behavior of amorphous carbon with different microstructures, providing theoretical guidance for the rational design of high‐performance amorphous carbon anodes. The threshold of the effective interlayer spacing for sodium insertion is extended from 0.370 to 0.345 nm in petroleum coke‐derived amorphous carbon. In conjunction with the optimized structural model of amorphous carbon, an extended adsorption/insertion‐filling sodium storage mechanism is proposed, which can accurately explain the sodium storage behavior of amorphous carbon with different microstructures.</abstract><cop>Germany</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>39283031</pmid><doi>10.1002/advs.202407538</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8066-7144</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2198-3844
ispartof Advanced science, 2024-11, Vol.11 (42), p.e2407538-n/a
issn 2198-3844
2198-3844
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ee2eac1ced0547a4b80dd46fb9e7625f
source Wiley-Blackwell Open Access Collection; Publicly Available Content Database; PubMed Central
subjects Adsorption
Carbon
closed pore filling
Energy storage
Graphite
interlayer insertion
Microstructure
petroleum coke
Sodium
sodium storage mechanism
sodium‐ion batteries
Temperature
Transmission electron microscopy
title Revealing an Extended Adsorption/Insertion‐Filling Sodium Storage Mechanism in Petroleum Coke‐Derived Amorphous Carbon
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T15%3A56%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revealing%20an%20Extended%20Adsorption/Insertion%E2%80%90Filling%20Sodium%20Storage%20Mechanism%20in%20Petroleum%20Coke%E2%80%90Derived%20Amorphous%20Carbon&rft.jtitle=Advanced%20science&rft.au=Lv,%20Jia%E2%80%90He&rft.date=2024-11-01&rft.volume=11&rft.issue=42&rft.spage=e2407538&rft.epage=n/a&rft.pages=e2407538-n/a&rft.issn=2198-3844&rft.eissn=2198-3844&rft_id=info:doi/10.1002/advs.202407538&rft_dat=%3Cproquest_doaj_%3E3106043896%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4854-bf718b8fdc7845ad49425fe4fa5681685f1db46a95e6c6efc1b5f16402767ab03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3127432735&rft_id=info:pmid/39283031&rfr_iscdi=true