Loading…

New Metallic Ordered Phase of Perovskite CsPbI3 under Pressure

Pressure‐induced electronic structure transition from insulating phase to metal state is a potential new paradigm for halide perovskites. The metallization based on these materials may afford a novel motif toward realizing new electronic properties even superconductivity phenomenon. Herein, how stat...

Full description

Saved in:
Bibliographic Details
Published in:Advanced science 2019-07, Vol.6 (14), p.1900399-n/a
Main Authors: Liang, Yongfu, Huang, Xiaoli, Huang, Yanping, Wang, Xin, Li, Fangfei, Wang, Youchun, Tian, Fubo, Liu, Bingbing, Shen, Ze Xiang, Cui, Tian
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page n/a
container_issue 14
container_start_page 1900399
container_title Advanced science
container_volume 6
creator Liang, Yongfu
Huang, Xiaoli
Huang, Yanping
Wang, Xin
Li, Fangfei
Wang, Youchun
Tian, Fubo
Liu, Bingbing
Shen, Ze Xiang
Cui, Tian
description Pressure‐induced electronic structure transition from insulating phase to metal state is a potential new paradigm for halide perovskites. The metallization based on these materials may afford a novel motif toward realizing new electronic properties even superconductivity phenomenon. Herein, how static compression modulates the crystal and electronic structure of typical perovskite semiconductors cesium lead iodine (CsPbI3) by both experimental and theoretical studies is reported. The comprehensive studies discover the insulator–metal transition of CsPbI3 at 39.3 GPa, and reveal the key information behind the electronic transition. The perovskite's precise structural evolution is tracked upon compression, from orthorhombic Pnma phase to monoclinic C2/m structure before the metallic transition. More interestingly, the C2/m phase has the most distorted octahedra and the shortest Pb–I bond length relative to the average bond length that is ever reported in a halide perovskite structure. The electronic transition stems from the structural changes accompanied by the anomalously self‐distorted octahedra. These studies show that pressure can significantly alter the structural and electronic properties of these technologically important perovskites. High pressure is performed to modify the structure and electrical properties of halide perovskites. The pressure response of cesium lead iodine is significant, along with bandgap narrowing, anomalous self‐distorted octahedra and metallization, which promote its photovoltaic applications by better materials‐by‐design.
doi_str_mv 10.1002/advs.201900399
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ee53e050c72a403c887a4a77bf77c4ca</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ee53e050c72a403c887a4a77bf77c4ca</doaj_id><sourcerecordid>2268573331</sourcerecordid><originalsourceid>FETCH-LOGICAL-d3949-5a555976b2cdb166401da769c96a0e258ad928dbcc2e72b1f847604c735ca6e33</originalsourceid><addsrcrecordid>eNpVkU1PG0EMhkdVUYMC15732EvA8z1ziRSlH0SiEAnodeSdcWDpJpvO7Abx7xsahMrJlv3qseSHsc8czjiAOMe0K2cCuAeQ3n9gx4J7N5FOqY__9SN2WsojAHAtreLuExtJLh0IDsdsekVP1U_qsW2bWF3nRJlStXzAQlW3qpaUu1353fRUzcuyXshq2Owj1TJTKUOmE3a0wrbQ6Wsds7vv327nF5PL6x-L-exykqRXfqJRa-2tqUVMNTdGAU9ojY_eIJDQDpMXLtUxCrKi5iunrAEVrdQRDUk5ZosDN3X4GLa5WWN-Dh024d-gy_cBc9_ElgKRlgQaohWoQEbnLCq0tl5ZG1XEPWt6YG2Hek0p0qbP2L6Dvt9smodw3-2CMYZ76feAL6-A3P0ZqPRh3ZRIbYsb6oYShDBOWyn3Xx4zdYg-NS09v93gEF4EhheB4U1gmH39dcO59vIvT96OFg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2268573331</pqid></control><display><type>article</type><title>New Metallic Ordered Phase of Perovskite CsPbI3 under Pressure</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><source>Wiley Open Access</source><creator>Liang, Yongfu ; Huang, Xiaoli ; Huang, Yanping ; Wang, Xin ; Li, Fangfei ; Wang, Youchun ; Tian, Fubo ; Liu, Bingbing ; Shen, Ze Xiang ; Cui, Tian</creator><creatorcontrib>Liang, Yongfu ; Huang, Xiaoli ; Huang, Yanping ; Wang, Xin ; Li, Fangfei ; Wang, Youchun ; Tian, Fubo ; Liu, Bingbing ; Shen, Ze Xiang ; Cui, Tian</creatorcontrib><description>Pressure‐induced electronic structure transition from insulating phase to metal state is a potential new paradigm for halide perovskites. The metallization based on these materials may afford a novel motif toward realizing new electronic properties even superconductivity phenomenon. Herein, how static compression modulates the crystal and electronic structure of typical perovskite semiconductors cesium lead iodine (CsPbI3) by both experimental and theoretical studies is reported. The comprehensive studies discover the insulator–metal transition of CsPbI3 at 39.3 GPa, and reveal the key information behind the electronic transition. The perovskite's precise structural evolution is tracked upon compression, from orthorhombic Pnma phase to monoclinic C2/m structure before the metallic transition. More interestingly, the C2/m phase has the most distorted octahedra and the shortest Pb–I bond length relative to the average bond length that is ever reported in a halide perovskite structure. The electronic transition stems from the structural changes accompanied by the anomalously self‐distorted octahedra. These studies show that pressure can significantly alter the structural and electronic properties of these technologically important perovskites. High pressure is performed to modify the structure and electrical properties of halide perovskites. The pressure response of cesium lead iodine is significant, along with bandgap narrowing, anomalous self‐distorted octahedra and metallization, which promote its photovoltaic applications by better materials‐by‐design.</description><identifier>ISSN: 2198-3844</identifier><identifier>EISSN: 2198-3844</identifier><identifier>DOI: 10.1002/advs.201900399</identifier><identifier>PMID: 31380210</identifier><language>eng</language><publisher>Hoboken: John Wiley and Sons Inc</publisher><subject>Communication ; Communications ; electronic structure ; high pressure ; metallization ; perovskites ; phase transition</subject><ispartof>Advanced science, 2019-07, Vol.6 (14), p.1900399-n/a</ispartof><rights>2019 The Authors. Published by WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9664-848X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6661939/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6661939/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,11562,27924,27925,37013,46052,46476,53791,53793</link.rule.ids></links><search><creatorcontrib>Liang, Yongfu</creatorcontrib><creatorcontrib>Huang, Xiaoli</creatorcontrib><creatorcontrib>Huang, Yanping</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Li, Fangfei</creatorcontrib><creatorcontrib>Wang, Youchun</creatorcontrib><creatorcontrib>Tian, Fubo</creatorcontrib><creatorcontrib>Liu, Bingbing</creatorcontrib><creatorcontrib>Shen, Ze Xiang</creatorcontrib><creatorcontrib>Cui, Tian</creatorcontrib><title>New Metallic Ordered Phase of Perovskite CsPbI3 under Pressure</title><title>Advanced science</title><description>Pressure‐induced electronic structure transition from insulating phase to metal state is a potential new paradigm for halide perovskites. The metallization based on these materials may afford a novel motif toward realizing new electronic properties even superconductivity phenomenon. Herein, how static compression modulates the crystal and electronic structure of typical perovskite semiconductors cesium lead iodine (CsPbI3) by both experimental and theoretical studies is reported. The comprehensive studies discover the insulator–metal transition of CsPbI3 at 39.3 GPa, and reveal the key information behind the electronic transition. The perovskite's precise structural evolution is tracked upon compression, from orthorhombic Pnma phase to monoclinic C2/m structure before the metallic transition. More interestingly, the C2/m phase has the most distorted octahedra and the shortest Pb–I bond length relative to the average bond length that is ever reported in a halide perovskite structure. The electronic transition stems from the structural changes accompanied by the anomalously self‐distorted octahedra. These studies show that pressure can significantly alter the structural and electronic properties of these technologically important perovskites. High pressure is performed to modify the structure and electrical properties of halide perovskites. The pressure response of cesium lead iodine is significant, along with bandgap narrowing, anomalous self‐distorted octahedra and metallization, which promote its photovoltaic applications by better materials‐by‐design.</description><subject>Communication</subject><subject>Communications</subject><subject>electronic structure</subject><subject>high pressure</subject><subject>metallization</subject><subject>perovskites</subject><subject>phase transition</subject><issn>2198-3844</issn><issn>2198-3844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>DOA</sourceid><recordid>eNpVkU1PG0EMhkdVUYMC15732EvA8z1ziRSlH0SiEAnodeSdcWDpJpvO7Abx7xsahMrJlv3qseSHsc8czjiAOMe0K2cCuAeQ3n9gx4J7N5FOqY__9SN2WsojAHAtreLuExtJLh0IDsdsekVP1U_qsW2bWF3nRJlStXzAQlW3qpaUu1353fRUzcuyXshq2Owj1TJTKUOmE3a0wrbQ6Wsds7vv327nF5PL6x-L-exykqRXfqJRa-2tqUVMNTdGAU9ojY_eIJDQDpMXLtUxCrKi5iunrAEVrdQRDUk5ZosDN3X4GLa5WWN-Dh024d-gy_cBc9_ElgKRlgQaohWoQEbnLCq0tl5ZG1XEPWt6YG2Hek0p0qbP2L6Dvt9smodw3-2CMYZ76feAL6-A3P0ZqPRh3ZRIbYsb6oYShDBOWyn3Xx4zdYg-NS09v93gEF4EhheB4U1gmH39dcO59vIvT96OFg</recordid><startdate>20190717</startdate><enddate>20190717</enddate><creator>Liang, Yongfu</creator><creator>Huang, Xiaoli</creator><creator>Huang, Yanping</creator><creator>Wang, Xin</creator><creator>Li, Fangfei</creator><creator>Wang, Youchun</creator><creator>Tian, Fubo</creator><creator>Liu, Bingbing</creator><creator>Shen, Ze Xiang</creator><creator>Cui, Tian</creator><general>John Wiley and Sons Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9664-848X</orcidid></search><sort><creationdate>20190717</creationdate><title>New Metallic Ordered Phase of Perovskite CsPbI3 under Pressure</title><author>Liang, Yongfu ; Huang, Xiaoli ; Huang, Yanping ; Wang, Xin ; Li, Fangfei ; Wang, Youchun ; Tian, Fubo ; Liu, Bingbing ; Shen, Ze Xiang ; Cui, Tian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d3949-5a555976b2cdb166401da769c96a0e258ad928dbcc2e72b1f847604c735ca6e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Communication</topic><topic>Communications</topic><topic>electronic structure</topic><topic>high pressure</topic><topic>metallization</topic><topic>perovskites</topic><topic>phase transition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Yongfu</creatorcontrib><creatorcontrib>Huang, Xiaoli</creatorcontrib><creatorcontrib>Huang, Yanping</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Li, Fangfei</creatorcontrib><creatorcontrib>Wang, Youchun</creatorcontrib><creatorcontrib>Tian, Fubo</creatorcontrib><creatorcontrib>Liu, Bingbing</creatorcontrib><creatorcontrib>Shen, Ze Xiang</creatorcontrib><creatorcontrib>Cui, Tian</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley Online Library Journals</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advanced science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Yongfu</au><au>Huang, Xiaoli</au><au>Huang, Yanping</au><au>Wang, Xin</au><au>Li, Fangfei</au><au>Wang, Youchun</au><au>Tian, Fubo</au><au>Liu, Bingbing</au><au>Shen, Ze Xiang</au><au>Cui, Tian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Metallic Ordered Phase of Perovskite CsPbI3 under Pressure</atitle><jtitle>Advanced science</jtitle><date>2019-07-17</date><risdate>2019</risdate><volume>6</volume><issue>14</issue><spage>1900399</spage><epage>n/a</epage><pages>1900399-n/a</pages><issn>2198-3844</issn><eissn>2198-3844</eissn><abstract>Pressure‐induced electronic structure transition from insulating phase to metal state is a potential new paradigm for halide perovskites. The metallization based on these materials may afford a novel motif toward realizing new electronic properties even superconductivity phenomenon. Herein, how static compression modulates the crystal and electronic structure of typical perovskite semiconductors cesium lead iodine (CsPbI3) by both experimental and theoretical studies is reported. The comprehensive studies discover the insulator–metal transition of CsPbI3 at 39.3 GPa, and reveal the key information behind the electronic transition. The perovskite's precise structural evolution is tracked upon compression, from orthorhombic Pnma phase to monoclinic C2/m structure before the metallic transition. More interestingly, the C2/m phase has the most distorted octahedra and the shortest Pb–I bond length relative to the average bond length that is ever reported in a halide perovskite structure. The electronic transition stems from the structural changes accompanied by the anomalously self‐distorted octahedra. These studies show that pressure can significantly alter the structural and electronic properties of these technologically important perovskites. High pressure is performed to modify the structure and electrical properties of halide perovskites. The pressure response of cesium lead iodine is significant, along with bandgap narrowing, anomalous self‐distorted octahedra and metallization, which promote its photovoltaic applications by better materials‐by‐design.</abstract><cop>Hoboken</cop><pub>John Wiley and Sons Inc</pub><pmid>31380210</pmid><doi>10.1002/advs.201900399</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9664-848X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2198-3844
ispartof Advanced science, 2019-07, Vol.6 (14), p.1900399-n/a
issn 2198-3844
2198-3844
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ee53e050c72a403c887a4a77bf77c4ca
source Open Access: PubMed Central; Publicly Available Content Database; Wiley Open Access
subjects Communication
Communications
electronic structure
high pressure
metallization
perovskites
phase transition
title New Metallic Ordered Phase of Perovskite CsPbI3 under Pressure
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A36%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Metallic%20Ordered%20Phase%20of%20Perovskite%20CsPbI3%20under%20Pressure&rft.jtitle=Advanced%20science&rft.au=Liang,%20Yongfu&rft.date=2019-07-17&rft.volume=6&rft.issue=14&rft.spage=1900399&rft.epage=n/a&rft.pages=1900399-n/a&rft.issn=2198-3844&rft.eissn=2198-3844&rft_id=info:doi/10.1002/advs.201900399&rft_dat=%3Cproquest_doaj_%3E2268573331%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-d3949-5a555976b2cdb166401da769c96a0e258ad928dbcc2e72b1f847604c735ca6e33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2268573331&rft_id=info:pmid/31380210&rfr_iscdi=true