Loading…
Weak Signal Extraction in Noise Using Variable-Step Gaussian-Sinusiodal Filter
When analyzing vibration or acoustic signals in machinery, noise interference within the characteristic signals can significantly distort the results. This issue is particularly pronounced in complex environments, where mechanical signals are often overwhelmed by noise, making it extremely difficult...
Saved in:
Published in: | Machines (Basel) 2024-09, Vol.12 (9), p.601 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c301t-864a5386dcd8c6c3a3e26eaab00d8e43f17e4fcad9fcc4975792a8f5b7e102cb3 |
container_end_page | |
container_issue | 9 |
container_start_page | 601 |
container_title | Machines (Basel) |
container_volume | 12 |
creator | Lou, Haiyang Hao, Rujiang Zhang, Jianchao |
description | When analyzing vibration or acoustic signals in machinery, noise interference within the characteristic signals can significantly distort the results. This issue is particularly pronounced in complex environments, where mechanical signals are often overwhelmed by noise, making it extremely difficult or even impossible to determine the operational status of mechanical equipment by the analysis of characteristic signals. Existing methods for analyzing weak signals in the presence of strong Gaussian noise have limitations in their effectiveness. This paper proposes an innovative approach that utilizes a Variable-Step Gaussian-Sinusoidal Filter (VSGF) combined with rotational coordinate transformation to extract weak signals from strong noise backgrounds. The proposed method improves noise reduction capabilities and frequency selectivity, showing significant improvements over traditional Gaussian filters. Experimental validation demonstrates that the signal detection accuracy of the proposed method is 10–15% higher than that of conventional Gaussian filters. This paper presents a detailed mathematical analysis, experimental validation, and comparisons with other methods to demonstrate the effectiveness of the proposed approach. |
doi_str_mv | 10.3390/machines12090601 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ee5dd8a2f8b748ff8949dbad4530215b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A811012644</galeid><doaj_id>oai_doaj_org_article_ee5dd8a2f8b748ff8949dbad4530215b</doaj_id><sourcerecordid>A811012644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-864a5386dcd8c6c3a3e26eaab00d8e43f17e4fcad9fcc4975792a8f5b7e102cb3</originalsourceid><addsrcrecordid>eNpdUU1r3DAQNaGFhCT3Hg05O9WXLfkYQpIGQnLYpj2KsTTazNYrbSUvtP--2m4ppTOHGR7vPYY3TfOBs2spR_ZxC-6NIhYu2MgGxk-aM8F033HNxLt_9tPmspQNqzVyaZQ5a56_InxrV7SOMLd3P5YMbqEUW4rtc6KC7WuhuG6_QCaYZuxWC-7aB9iXQhC7FcV9oeSr9p7mBfNF8z7AXPDyzzxvXu_vPt9-6p5eHh5vb546JxlfOjMo6KUZvPPGDU6CRDEgwMSYN6hk4BpVcODH4Jwada9HASb0k0bOhJvkefN49PUJNnaXaQv5p01A9jeQ8tpCXsjNaBF77w2IYCatTAhmVKOfwKteMsH7g9fV0WuX0_c9lsVu0j7XPIqVnLNeS82Hyro-stZQTSmGdMiqtsctuRQxUMVvTFVwMShVBewocDmVkjH8PZMze_ia_f9r8hdzdIvL</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110573716</pqid></control><display><type>article</type><title>Weak Signal Extraction in Noise Using Variable-Step Gaussian-Sinusiodal Filter</title><source>Publicly Available Content Database</source><creator>Lou, Haiyang ; Hao, Rujiang ; Zhang, Jianchao</creator><creatorcontrib>Lou, Haiyang ; Hao, Rujiang ; Zhang, Jianchao</creatorcontrib><description>When analyzing vibration or acoustic signals in machinery, noise interference within the characteristic signals can significantly distort the results. This issue is particularly pronounced in complex environments, where mechanical signals are often overwhelmed by noise, making it extremely difficult or even impossible to determine the operational status of mechanical equipment by the analysis of characteristic signals. Existing methods for analyzing weak signals in the presence of strong Gaussian noise have limitations in their effectiveness. This paper proposes an innovative approach that utilizes a Variable-Step Gaussian-Sinusoidal Filter (VSGF) combined with rotational coordinate transformation to extract weak signals from strong noise backgrounds. The proposed method improves noise reduction capabilities and frequency selectivity, showing significant improvements over traditional Gaussian filters. Experimental validation demonstrates that the signal detection accuracy of the proposed method is 10–15% higher than that of conventional Gaussian filters. This paper presents a detailed mathematical analysis, experimental validation, and comparisons with other methods to demonstrate the effectiveness of the proposed approach.</description><identifier>ISSN: 2075-1702</identifier><identifier>EISSN: 2075-1702</identifier><identifier>DOI: 10.3390/machines12090601</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Analysis ; Coordinate transformations ; Effectiveness ; Electrocardiography ; Extreme values ; Fault diagnosis ; Mathematical analysis ; Methods ; Neural networks ; Noise control ; Noise reduction ; Numerical analysis ; Random noise ; rotating coordinate transformation ; Signal detection ; Signal processing ; Signal to noise ratio ; variable-step Gaussian-Sinusoidal filter ; Vibration analysis ; Wavelet transforms ; weak signal extraction</subject><ispartof>Machines (Basel), 2024-09, Vol.12 (9), p.601</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c301t-864a5386dcd8c6c3a3e26eaab00d8e43f17e4fcad9fcc4975792a8f5b7e102cb3</cites><orcidid>0000-0001-6691-0283</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3110573716/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3110573716?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Lou, Haiyang</creatorcontrib><creatorcontrib>Hao, Rujiang</creatorcontrib><creatorcontrib>Zhang, Jianchao</creatorcontrib><title>Weak Signal Extraction in Noise Using Variable-Step Gaussian-Sinusiodal Filter</title><title>Machines (Basel)</title><description>When analyzing vibration or acoustic signals in machinery, noise interference within the characteristic signals can significantly distort the results. This issue is particularly pronounced in complex environments, where mechanical signals are often overwhelmed by noise, making it extremely difficult or even impossible to determine the operational status of mechanical equipment by the analysis of characteristic signals. Existing methods for analyzing weak signals in the presence of strong Gaussian noise have limitations in their effectiveness. This paper proposes an innovative approach that utilizes a Variable-Step Gaussian-Sinusoidal Filter (VSGF) combined with rotational coordinate transformation to extract weak signals from strong noise backgrounds. The proposed method improves noise reduction capabilities and frequency selectivity, showing significant improvements over traditional Gaussian filters. Experimental validation demonstrates that the signal detection accuracy of the proposed method is 10–15% higher than that of conventional Gaussian filters. This paper presents a detailed mathematical analysis, experimental validation, and comparisons with other methods to demonstrate the effectiveness of the proposed approach.</description><subject>Analysis</subject><subject>Coordinate transformations</subject><subject>Effectiveness</subject><subject>Electrocardiography</subject><subject>Extreme values</subject><subject>Fault diagnosis</subject><subject>Mathematical analysis</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Noise control</subject><subject>Noise reduction</subject><subject>Numerical analysis</subject><subject>Random noise</subject><subject>rotating coordinate transformation</subject><subject>Signal detection</subject><subject>Signal processing</subject><subject>Signal to noise ratio</subject><subject>variable-step Gaussian-Sinusoidal filter</subject><subject>Vibration analysis</subject><subject>Wavelet transforms</subject><subject>weak signal extraction</subject><issn>2075-1702</issn><issn>2075-1702</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdUU1r3DAQNaGFhCT3Hg05O9WXLfkYQpIGQnLYpj2KsTTazNYrbSUvtP--2m4ppTOHGR7vPYY3TfOBs2spR_ZxC-6NIhYu2MgGxk-aM8F033HNxLt_9tPmspQNqzVyaZQ5a56_InxrV7SOMLd3P5YMbqEUW4rtc6KC7WuhuG6_QCaYZuxWC-7aB9iXQhC7FcV9oeSr9p7mBfNF8z7AXPDyzzxvXu_vPt9-6p5eHh5vb546JxlfOjMo6KUZvPPGDU6CRDEgwMSYN6hk4BpVcODH4Jwada9HASb0k0bOhJvkefN49PUJNnaXaQv5p01A9jeQ8tpCXsjNaBF77w2IYCatTAhmVKOfwKteMsH7g9fV0WuX0_c9lsVu0j7XPIqVnLNeS82Hyro-stZQTSmGdMiqtsctuRQxUMVvTFVwMShVBewocDmVkjH8PZMze_ia_f9r8hdzdIvL</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Lou, Haiyang</creator><creator>Hao, Rujiang</creator><creator>Zhang, Jianchao</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6691-0283</orcidid></search><sort><creationdate>20240901</creationdate><title>Weak Signal Extraction in Noise Using Variable-Step Gaussian-Sinusiodal Filter</title><author>Lou, Haiyang ; Hao, Rujiang ; Zhang, Jianchao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-864a5386dcd8c6c3a3e26eaab00d8e43f17e4fcad9fcc4975792a8f5b7e102cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analysis</topic><topic>Coordinate transformations</topic><topic>Effectiveness</topic><topic>Electrocardiography</topic><topic>Extreme values</topic><topic>Fault diagnosis</topic><topic>Mathematical analysis</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Noise control</topic><topic>Noise reduction</topic><topic>Numerical analysis</topic><topic>Random noise</topic><topic>rotating coordinate transformation</topic><topic>Signal detection</topic><topic>Signal processing</topic><topic>Signal to noise ratio</topic><topic>variable-step Gaussian-Sinusoidal filter</topic><topic>Vibration analysis</topic><topic>Wavelet transforms</topic><topic>weak signal extraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lou, Haiyang</creatorcontrib><creatorcontrib>Hao, Rujiang</creatorcontrib><creatorcontrib>Zhang, Jianchao</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Machines (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lou, Haiyang</au><au>Hao, Rujiang</au><au>Zhang, Jianchao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weak Signal Extraction in Noise Using Variable-Step Gaussian-Sinusiodal Filter</atitle><jtitle>Machines (Basel)</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>12</volume><issue>9</issue><spage>601</spage><pages>601-</pages><issn>2075-1702</issn><eissn>2075-1702</eissn><abstract>When analyzing vibration or acoustic signals in machinery, noise interference within the characteristic signals can significantly distort the results. This issue is particularly pronounced in complex environments, where mechanical signals are often overwhelmed by noise, making it extremely difficult or even impossible to determine the operational status of mechanical equipment by the analysis of characteristic signals. Existing methods for analyzing weak signals in the presence of strong Gaussian noise have limitations in their effectiveness. This paper proposes an innovative approach that utilizes a Variable-Step Gaussian-Sinusoidal Filter (VSGF) combined with rotational coordinate transformation to extract weak signals from strong noise backgrounds. The proposed method improves noise reduction capabilities and frequency selectivity, showing significant improvements over traditional Gaussian filters. Experimental validation demonstrates that the signal detection accuracy of the proposed method is 10–15% higher than that of conventional Gaussian filters. This paper presents a detailed mathematical analysis, experimental validation, and comparisons with other methods to demonstrate the effectiveness of the proposed approach.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/machines12090601</doi><orcidid>https://orcid.org/0000-0001-6691-0283</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2075-1702 |
ispartof | Machines (Basel), 2024-09, Vol.12 (9), p.601 |
issn | 2075-1702 2075-1702 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ee5dd8a2f8b748ff8949dbad4530215b |
source | Publicly Available Content Database |
subjects | Analysis Coordinate transformations Effectiveness Electrocardiography Extreme values Fault diagnosis Mathematical analysis Methods Neural networks Noise control Noise reduction Numerical analysis Random noise rotating coordinate transformation Signal detection Signal processing Signal to noise ratio variable-step Gaussian-Sinusoidal filter Vibration analysis Wavelet transforms weak signal extraction |
title | Weak Signal Extraction in Noise Using Variable-Step Gaussian-Sinusiodal Filter |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A30%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weak%20Signal%20Extraction%20in%20Noise%20Using%20Variable-Step%20Gaussian-Sinusiodal%20Filter&rft.jtitle=Machines%20(Basel)&rft.au=Lou,%20Haiyang&rft.date=2024-09-01&rft.volume=12&rft.issue=9&rft.spage=601&rft.pages=601-&rft.issn=2075-1702&rft.eissn=2075-1702&rft_id=info:doi/10.3390/machines12090601&rft_dat=%3Cgale_doaj_%3EA811012644%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c301t-864a5386dcd8c6c3a3e26eaab00d8e43f17e4fcad9fcc4975792a8f5b7e102cb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3110573716&rft_id=info:pmid/&rft_galeid=A811012644&rfr_iscdi=true |