Loading…

Weak Signal Extraction in Noise Using Variable-Step Gaussian-Sinusiodal Filter

When analyzing vibration or acoustic signals in machinery, noise interference within the characteristic signals can significantly distort the results. This issue is particularly pronounced in complex environments, where mechanical signals are often overwhelmed by noise, making it extremely difficult...

Full description

Saved in:
Bibliographic Details
Published in:Machines (Basel) 2024-09, Vol.12 (9), p.601
Main Authors: Lou, Haiyang, Hao, Rujiang, Zhang, Jianchao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c301t-864a5386dcd8c6c3a3e26eaab00d8e43f17e4fcad9fcc4975792a8f5b7e102cb3
container_end_page
container_issue 9
container_start_page 601
container_title Machines (Basel)
container_volume 12
creator Lou, Haiyang
Hao, Rujiang
Zhang, Jianchao
description When analyzing vibration or acoustic signals in machinery, noise interference within the characteristic signals can significantly distort the results. This issue is particularly pronounced in complex environments, where mechanical signals are often overwhelmed by noise, making it extremely difficult or even impossible to determine the operational status of mechanical equipment by the analysis of characteristic signals. Existing methods for analyzing weak signals in the presence of strong Gaussian noise have limitations in their effectiveness. This paper proposes an innovative approach that utilizes a Variable-Step Gaussian-Sinusoidal Filter (VSGF) combined with rotational coordinate transformation to extract weak signals from strong noise backgrounds. The proposed method improves noise reduction capabilities and frequency selectivity, showing significant improvements over traditional Gaussian filters. Experimental validation demonstrates that the signal detection accuracy of the proposed method is 10–15% higher than that of conventional Gaussian filters. This paper presents a detailed mathematical analysis, experimental validation, and comparisons with other methods to demonstrate the effectiveness of the proposed approach.
doi_str_mv 10.3390/machines12090601
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ee5dd8a2f8b748ff8949dbad4530215b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A811012644</galeid><doaj_id>oai_doaj_org_article_ee5dd8a2f8b748ff8949dbad4530215b</doaj_id><sourcerecordid>A811012644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-864a5386dcd8c6c3a3e26eaab00d8e43f17e4fcad9fcc4975792a8f5b7e102cb3</originalsourceid><addsrcrecordid>eNpdUU1r3DAQNaGFhCT3Hg05O9WXLfkYQpIGQnLYpj2KsTTazNYrbSUvtP--2m4ppTOHGR7vPYY3TfOBs2spR_ZxC-6NIhYu2MgGxk-aM8F033HNxLt_9tPmspQNqzVyaZQ5a56_InxrV7SOMLd3P5YMbqEUW4rtc6KC7WuhuG6_QCaYZuxWC-7aB9iXQhC7FcV9oeSr9p7mBfNF8z7AXPDyzzxvXu_vPt9-6p5eHh5vb546JxlfOjMo6KUZvPPGDU6CRDEgwMSYN6hk4BpVcODH4Jwada9HASb0k0bOhJvkefN49PUJNnaXaQv5p01A9jeQ8tpCXsjNaBF77w2IYCatTAhmVKOfwKteMsH7g9fV0WuX0_c9lsVu0j7XPIqVnLNeS82Hyro-stZQTSmGdMiqtsctuRQxUMVvTFVwMShVBewocDmVkjH8PZMze_ia_f9r8hdzdIvL</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110573716</pqid></control><display><type>article</type><title>Weak Signal Extraction in Noise Using Variable-Step Gaussian-Sinusiodal Filter</title><source>Publicly Available Content Database</source><creator>Lou, Haiyang ; Hao, Rujiang ; Zhang, Jianchao</creator><creatorcontrib>Lou, Haiyang ; Hao, Rujiang ; Zhang, Jianchao</creatorcontrib><description>When analyzing vibration or acoustic signals in machinery, noise interference within the characteristic signals can significantly distort the results. This issue is particularly pronounced in complex environments, where mechanical signals are often overwhelmed by noise, making it extremely difficult or even impossible to determine the operational status of mechanical equipment by the analysis of characteristic signals. Existing methods for analyzing weak signals in the presence of strong Gaussian noise have limitations in their effectiveness. This paper proposes an innovative approach that utilizes a Variable-Step Gaussian-Sinusoidal Filter (VSGF) combined with rotational coordinate transformation to extract weak signals from strong noise backgrounds. The proposed method improves noise reduction capabilities and frequency selectivity, showing significant improvements over traditional Gaussian filters. Experimental validation demonstrates that the signal detection accuracy of the proposed method is 10–15% higher than that of conventional Gaussian filters. This paper presents a detailed mathematical analysis, experimental validation, and comparisons with other methods to demonstrate the effectiveness of the proposed approach.</description><identifier>ISSN: 2075-1702</identifier><identifier>EISSN: 2075-1702</identifier><identifier>DOI: 10.3390/machines12090601</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Analysis ; Coordinate transformations ; Effectiveness ; Electrocardiography ; Extreme values ; Fault diagnosis ; Mathematical analysis ; Methods ; Neural networks ; Noise control ; Noise reduction ; Numerical analysis ; Random noise ; rotating coordinate transformation ; Signal detection ; Signal processing ; Signal to noise ratio ; variable-step Gaussian-Sinusoidal filter ; Vibration analysis ; Wavelet transforms ; weak signal extraction</subject><ispartof>Machines (Basel), 2024-09, Vol.12 (9), p.601</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c301t-864a5386dcd8c6c3a3e26eaab00d8e43f17e4fcad9fcc4975792a8f5b7e102cb3</cites><orcidid>0000-0001-6691-0283</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3110573716/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3110573716?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Lou, Haiyang</creatorcontrib><creatorcontrib>Hao, Rujiang</creatorcontrib><creatorcontrib>Zhang, Jianchao</creatorcontrib><title>Weak Signal Extraction in Noise Using Variable-Step Gaussian-Sinusiodal Filter</title><title>Machines (Basel)</title><description>When analyzing vibration or acoustic signals in machinery, noise interference within the characteristic signals can significantly distort the results. This issue is particularly pronounced in complex environments, where mechanical signals are often overwhelmed by noise, making it extremely difficult or even impossible to determine the operational status of mechanical equipment by the analysis of characteristic signals. Existing methods for analyzing weak signals in the presence of strong Gaussian noise have limitations in their effectiveness. This paper proposes an innovative approach that utilizes a Variable-Step Gaussian-Sinusoidal Filter (VSGF) combined with rotational coordinate transformation to extract weak signals from strong noise backgrounds. The proposed method improves noise reduction capabilities and frequency selectivity, showing significant improvements over traditional Gaussian filters. Experimental validation demonstrates that the signal detection accuracy of the proposed method is 10–15% higher than that of conventional Gaussian filters. This paper presents a detailed mathematical analysis, experimental validation, and comparisons with other methods to demonstrate the effectiveness of the proposed approach.</description><subject>Analysis</subject><subject>Coordinate transformations</subject><subject>Effectiveness</subject><subject>Electrocardiography</subject><subject>Extreme values</subject><subject>Fault diagnosis</subject><subject>Mathematical analysis</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Noise control</subject><subject>Noise reduction</subject><subject>Numerical analysis</subject><subject>Random noise</subject><subject>rotating coordinate transformation</subject><subject>Signal detection</subject><subject>Signal processing</subject><subject>Signal to noise ratio</subject><subject>variable-step Gaussian-Sinusoidal filter</subject><subject>Vibration analysis</subject><subject>Wavelet transforms</subject><subject>weak signal extraction</subject><issn>2075-1702</issn><issn>2075-1702</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdUU1r3DAQNaGFhCT3Hg05O9WXLfkYQpIGQnLYpj2KsTTazNYrbSUvtP--2m4ppTOHGR7vPYY3TfOBs2spR_ZxC-6NIhYu2MgGxk-aM8F033HNxLt_9tPmspQNqzVyaZQ5a56_InxrV7SOMLd3P5YMbqEUW4rtc6KC7WuhuG6_QCaYZuxWC-7aB9iXQhC7FcV9oeSr9p7mBfNF8z7AXPDyzzxvXu_vPt9-6p5eHh5vb546JxlfOjMo6KUZvPPGDU6CRDEgwMSYN6hk4BpVcODH4Jwada9HASb0k0bOhJvkefN49PUJNnaXaQv5p01A9jeQ8tpCXsjNaBF77w2IYCatTAhmVKOfwKteMsH7g9fV0WuX0_c9lsVu0j7XPIqVnLNeS82Hyro-stZQTSmGdMiqtsctuRQxUMVvTFVwMShVBewocDmVkjH8PZMze_ia_f9r8hdzdIvL</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Lou, Haiyang</creator><creator>Hao, Rujiang</creator><creator>Zhang, Jianchao</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6691-0283</orcidid></search><sort><creationdate>20240901</creationdate><title>Weak Signal Extraction in Noise Using Variable-Step Gaussian-Sinusiodal Filter</title><author>Lou, Haiyang ; Hao, Rujiang ; Zhang, Jianchao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-864a5386dcd8c6c3a3e26eaab00d8e43f17e4fcad9fcc4975792a8f5b7e102cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analysis</topic><topic>Coordinate transformations</topic><topic>Effectiveness</topic><topic>Electrocardiography</topic><topic>Extreme values</topic><topic>Fault diagnosis</topic><topic>Mathematical analysis</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Noise control</topic><topic>Noise reduction</topic><topic>Numerical analysis</topic><topic>Random noise</topic><topic>rotating coordinate transformation</topic><topic>Signal detection</topic><topic>Signal processing</topic><topic>Signal to noise ratio</topic><topic>variable-step Gaussian-Sinusoidal filter</topic><topic>Vibration analysis</topic><topic>Wavelet transforms</topic><topic>weak signal extraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lou, Haiyang</creatorcontrib><creatorcontrib>Hao, Rujiang</creatorcontrib><creatorcontrib>Zhang, Jianchao</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Machines (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lou, Haiyang</au><au>Hao, Rujiang</au><au>Zhang, Jianchao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weak Signal Extraction in Noise Using Variable-Step Gaussian-Sinusiodal Filter</atitle><jtitle>Machines (Basel)</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>12</volume><issue>9</issue><spage>601</spage><pages>601-</pages><issn>2075-1702</issn><eissn>2075-1702</eissn><abstract>When analyzing vibration or acoustic signals in machinery, noise interference within the characteristic signals can significantly distort the results. This issue is particularly pronounced in complex environments, where mechanical signals are often overwhelmed by noise, making it extremely difficult or even impossible to determine the operational status of mechanical equipment by the analysis of characteristic signals. Existing methods for analyzing weak signals in the presence of strong Gaussian noise have limitations in their effectiveness. This paper proposes an innovative approach that utilizes a Variable-Step Gaussian-Sinusoidal Filter (VSGF) combined with rotational coordinate transformation to extract weak signals from strong noise backgrounds. The proposed method improves noise reduction capabilities and frequency selectivity, showing significant improvements over traditional Gaussian filters. Experimental validation demonstrates that the signal detection accuracy of the proposed method is 10–15% higher than that of conventional Gaussian filters. This paper presents a detailed mathematical analysis, experimental validation, and comparisons with other methods to demonstrate the effectiveness of the proposed approach.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/machines12090601</doi><orcidid>https://orcid.org/0000-0001-6691-0283</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2075-1702
ispartof Machines (Basel), 2024-09, Vol.12 (9), p.601
issn 2075-1702
2075-1702
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ee5dd8a2f8b748ff8949dbad4530215b
source Publicly Available Content Database
subjects Analysis
Coordinate transformations
Effectiveness
Electrocardiography
Extreme values
Fault diagnosis
Mathematical analysis
Methods
Neural networks
Noise control
Noise reduction
Numerical analysis
Random noise
rotating coordinate transformation
Signal detection
Signal processing
Signal to noise ratio
variable-step Gaussian-Sinusoidal filter
Vibration analysis
Wavelet transforms
weak signal extraction
title Weak Signal Extraction in Noise Using Variable-Step Gaussian-Sinusiodal Filter
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A30%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weak%20Signal%20Extraction%20in%20Noise%20Using%20Variable-Step%20Gaussian-Sinusiodal%20Filter&rft.jtitle=Machines%20(Basel)&rft.au=Lou,%20Haiyang&rft.date=2024-09-01&rft.volume=12&rft.issue=9&rft.spage=601&rft.pages=601-&rft.issn=2075-1702&rft.eissn=2075-1702&rft_id=info:doi/10.3390/machines12090601&rft_dat=%3Cgale_doaj_%3EA811012644%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c301t-864a5386dcd8c6c3a3e26eaab00d8e43f17e4fcad9fcc4975792a8f5b7e102cb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3110573716&rft_id=info:pmid/&rft_galeid=A811012644&rfr_iscdi=true