Loading…

Noise-injected analog Ising machines enable ultrafast statistical sampling and machine learning

Ising machines are a promising non-von-Neumann computational concept for neural network training and combinatorial optimization. However, while various neural networks can be implemented with Ising machines, their inability to perform fast statistical sampling makes them inefficient for training neu...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2022-10, Vol.13 (1), p.5847-5847, Article 5847
Main Authors: Böhm, Fabian, Alonso-Urquijo, Diego, Verschaffelt, Guy, Van der Sande, Guy
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c517t-b8b720ffd4cc5b1b3cb783d1d19ab12fe3ddcb56efcc9d6e81809a145384f8bd3
cites cdi_FETCH-LOGICAL-c517t-b8b720ffd4cc5b1b3cb783d1d19ab12fe3ddcb56efcc9d6e81809a145384f8bd3
container_end_page 5847
container_issue 1
container_start_page 5847
container_title Nature communications
container_volume 13
creator Böhm, Fabian
Alonso-Urquijo, Diego
Verschaffelt, Guy
Van der Sande, Guy
description Ising machines are a promising non-von-Neumann computational concept for neural network training and combinatorial optimization. However, while various neural networks can be implemented with Ising machines, their inability to perform fast statistical sampling makes them inefficient for training neural networks compared to digital computers. Here, we introduce a universal concept to achieve ultrafast statistical sampling with analog Ising machines by injecting noise. With an opto-electronic Ising machine, we experimentally demonstrate that this can be used for accurate sampling of Boltzmann distributions and for unsupervised training of neural networks, with equal accuracy as software-based training. Through simulations, we find that Ising machines can perform statistical sampling orders-of-magnitudes faster than software-based methods. This enables the use of Ising machines beyond combinatorial optimization and makes them into efficient tools for machine learning and other applications. Ising machines are accelerators for computing difficult optimization problems. In this work, Böhm et al. demonstrate a method that extends their use to perform statistical sampling and machine learning orders-of-magnitudes faster than digital computers.
doi_str_mv 10.1038/s41467-022-33441-3
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ee60eee909df4e9c8aa1f7bff7d171c2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ee60eee909df4e9c8aa1f7bff7d171c2</doaj_id><sourcerecordid>2721078384</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-b8b720ffd4cc5b1b3cb783d1d19ab12fe3ddcb56efcc9d6e81809a145384f8bd3</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhi0EotXSP8ApEhcuAX8lsS9IqOJjpQoucLbG9jjNynEWO4vEv8fblI9yYC4ejd95NGO_hDxn9BWjQr0uksl-aCnnrRBSslY8Ipec1oQNXDz-K78gV6UcaA2hmZLyKbkQPdNdp_QlMZ-WqWA7pQO6FX0DCeIyNvsypbGZwd1OCUuDCWzE5hTXDAHK2pQV1qmsk4PYFJiP8SyH5H-1NBEhp1p8Rp4EiAWv7s8d-fr-3Zfrj-3N5w_767c3revYsLZW2YHTELx0rrPMCmcHJTzzTINlPKDw3tmux-Cc9j0qpqgGJjuhZFDWix3Zb1y_wMEc8zRD_mEWmMxdYcmjgVznjWgQe4qImmofJGqnAFgYbAiDZwNzvLLebKzjyc7oHaa6dnwAfXiTplszLt-N7gQXSlfAy3tAXr6dsKxmnorDGCHhciqGD5z1ohc1duTFP9LDcsr1EzYVra-gZFXxTeXyUkrG8HsYRs3ZDmazg6l2MHd2MGe02JpKFacR8x_0f7p-Ag_SuVw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2721078384</pqid></control><display><type>article</type><title>Noise-injected analog Ising machines enable ultrafast statistical sampling and machine learning</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central (Open access)</source><source>Springer Nature - Connect here FIRST to enable access</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Böhm, Fabian ; Alonso-Urquijo, Diego ; Verschaffelt, Guy ; Van der Sande, Guy</creator><creatorcontrib>Böhm, Fabian ; Alonso-Urquijo, Diego ; Verschaffelt, Guy ; Van der Sande, Guy</creatorcontrib><description>Ising machines are a promising non-von-Neumann computational concept for neural network training and combinatorial optimization. However, while various neural networks can be implemented with Ising machines, their inability to perform fast statistical sampling makes them inefficient for training neural networks compared to digital computers. Here, we introduce a universal concept to achieve ultrafast statistical sampling with analog Ising machines by injecting noise. With an opto-electronic Ising machine, we experimentally demonstrate that this can be used for accurate sampling of Boltzmann distributions and for unsupervised training of neural networks, with equal accuracy as software-based training. Through simulations, we find that Ising machines can perform statistical sampling orders-of-magnitudes faster than software-based methods. This enables the use of Ising machines beyond combinatorial optimization and makes them into efficient tools for machine learning and other applications. Ising machines are accelerators for computing difficult optimization problems. In this work, Böhm et al. demonstrate a method that extends their use to perform statistical sampling and machine learning orders-of-magnitudes faster than digital computers.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-022-33441-3</identifier><identifier>PMID: 36195589</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1075/401 ; 639/705/117 ; 639/766/259 ; 639/766/530/2801 ; Combinatorial analysis ; Computer applications ; Computers ; Digital computers ; Humanities and Social Sciences ; Ising model ; Learning algorithms ; Machine learning ; multidisciplinary ; Neural networks ; Optimization ; Optoelectronics ; Sampling ; Science ; Science (multidisciplinary) ; Software ; Statistical sampling ; Statistics ; Training</subject><ispartof>Nature communications, 2022-10, Vol.13 (1), p.5847-5847, Article 5847</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-b8b720ffd4cc5b1b3cb783d1d19ab12fe3ddcb56efcc9d6e81809a145384f8bd3</citedby><cites>FETCH-LOGICAL-c517t-b8b720ffd4cc5b1b3cb783d1d19ab12fe3ddcb56efcc9d6e81809a145384f8bd3</cites><orcidid>0000-0002-6291-0646 ; 0000-0002-6724-2587 ; 0000-0001-8516-9785 ; 0000-0001-7635-1307</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2721078384/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2721078384?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids></links><search><creatorcontrib>Böhm, Fabian</creatorcontrib><creatorcontrib>Alonso-Urquijo, Diego</creatorcontrib><creatorcontrib>Verschaffelt, Guy</creatorcontrib><creatorcontrib>Van der Sande, Guy</creatorcontrib><title>Noise-injected analog Ising machines enable ultrafast statistical sampling and machine learning</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><description>Ising machines are a promising non-von-Neumann computational concept for neural network training and combinatorial optimization. However, while various neural networks can be implemented with Ising machines, their inability to perform fast statistical sampling makes them inefficient for training neural networks compared to digital computers. Here, we introduce a universal concept to achieve ultrafast statistical sampling with analog Ising machines by injecting noise. With an opto-electronic Ising machine, we experimentally demonstrate that this can be used for accurate sampling of Boltzmann distributions and for unsupervised training of neural networks, with equal accuracy as software-based training. Through simulations, we find that Ising machines can perform statistical sampling orders-of-magnitudes faster than software-based methods. This enables the use of Ising machines beyond combinatorial optimization and makes them into efficient tools for machine learning and other applications. Ising machines are accelerators for computing difficult optimization problems. In this work, Böhm et al. demonstrate a method that extends their use to perform statistical sampling and machine learning orders-of-magnitudes faster than digital computers.</description><subject>639/624/1075/401</subject><subject>639/705/117</subject><subject>639/766/259</subject><subject>639/766/530/2801</subject><subject>Combinatorial analysis</subject><subject>Computer applications</subject><subject>Computers</subject><subject>Digital computers</subject><subject>Humanities and Social Sciences</subject><subject>Ising model</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>multidisciplinary</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Optoelectronics</subject><subject>Sampling</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Software</subject><subject>Statistical sampling</subject><subject>Statistics</subject><subject>Training</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1v1DAQhi0EotXSP8ApEhcuAX8lsS9IqOJjpQoucLbG9jjNynEWO4vEv8fblI9yYC4ejd95NGO_hDxn9BWjQr0uksl-aCnnrRBSslY8Ipec1oQNXDz-K78gV6UcaA2hmZLyKbkQPdNdp_QlMZ-WqWA7pQO6FX0DCeIyNvsypbGZwd1OCUuDCWzE5hTXDAHK2pQV1qmsk4PYFJiP8SyH5H-1NBEhp1p8Rp4EiAWv7s8d-fr-3Zfrj-3N5w_767c3revYsLZW2YHTELx0rrPMCmcHJTzzTINlPKDw3tmux-Cc9j0qpqgGJjuhZFDWix3Zb1y_wMEc8zRD_mEWmMxdYcmjgVznjWgQe4qImmofJGqnAFgYbAiDZwNzvLLebKzjyc7oHaa6dnwAfXiTplszLt-N7gQXSlfAy3tAXr6dsKxmnorDGCHhciqGD5z1ohc1duTFP9LDcsr1EzYVra-gZFXxTeXyUkrG8HsYRs3ZDmazg6l2MHd2MGe02JpKFacR8x_0f7p-Ag_SuVw</recordid><startdate>20221004</startdate><enddate>20221004</enddate><creator>Böhm, Fabian</creator><creator>Alonso-Urquijo, Diego</creator><creator>Verschaffelt, Guy</creator><creator>Van der Sande, Guy</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6291-0646</orcidid><orcidid>https://orcid.org/0000-0002-6724-2587</orcidid><orcidid>https://orcid.org/0000-0001-8516-9785</orcidid><orcidid>https://orcid.org/0000-0001-7635-1307</orcidid></search><sort><creationdate>20221004</creationdate><title>Noise-injected analog Ising machines enable ultrafast statistical sampling and machine learning</title><author>Böhm, Fabian ; Alonso-Urquijo, Diego ; Verschaffelt, Guy ; Van der Sande, Guy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-b8b720ffd4cc5b1b3cb783d1d19ab12fe3ddcb56efcc9d6e81809a145384f8bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>639/624/1075/401</topic><topic>639/705/117</topic><topic>639/766/259</topic><topic>639/766/530/2801</topic><topic>Combinatorial analysis</topic><topic>Computer applications</topic><topic>Computers</topic><topic>Digital computers</topic><topic>Humanities and Social Sciences</topic><topic>Ising model</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>multidisciplinary</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Optoelectronics</topic><topic>Sampling</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Software</topic><topic>Statistical sampling</topic><topic>Statistics</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Böhm, Fabian</creatorcontrib><creatorcontrib>Alonso-Urquijo, Diego</creatorcontrib><creatorcontrib>Verschaffelt, Guy</creatorcontrib><creatorcontrib>Van der Sande, Guy</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Böhm, Fabian</au><au>Alonso-Urquijo, Diego</au><au>Verschaffelt, Guy</au><au>Van der Sande, Guy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noise-injected analog Ising machines enable ultrafast statistical sampling and machine learning</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><date>2022-10-04</date><risdate>2022</risdate><volume>13</volume><issue>1</issue><spage>5847</spage><epage>5847</epage><pages>5847-5847</pages><artnum>5847</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Ising machines are a promising non-von-Neumann computational concept for neural network training and combinatorial optimization. However, while various neural networks can be implemented with Ising machines, their inability to perform fast statistical sampling makes them inefficient for training neural networks compared to digital computers. Here, we introduce a universal concept to achieve ultrafast statistical sampling with analog Ising machines by injecting noise. With an opto-electronic Ising machine, we experimentally demonstrate that this can be used for accurate sampling of Boltzmann distributions and for unsupervised training of neural networks, with equal accuracy as software-based training. Through simulations, we find that Ising machines can perform statistical sampling orders-of-magnitudes faster than software-based methods. This enables the use of Ising machines beyond combinatorial optimization and makes them into efficient tools for machine learning and other applications. Ising machines are accelerators for computing difficult optimization problems. In this work, Böhm et al. demonstrate a method that extends their use to perform statistical sampling and machine learning orders-of-magnitudes faster than digital computers.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36195589</pmid><doi>10.1038/s41467-022-33441-3</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-6291-0646</orcidid><orcidid>https://orcid.org/0000-0002-6724-2587</orcidid><orcidid>https://orcid.org/0000-0001-8516-9785</orcidid><orcidid>https://orcid.org/0000-0001-7635-1307</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2022-10, Vol.13 (1), p.5847-5847, Article 5847
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ee60eee909df4e9c8aa1f7bff7d171c2
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central (Open access); Springer Nature - Connect here FIRST to enable access; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/624/1075/401
639/705/117
639/766/259
639/766/530/2801
Combinatorial analysis
Computer applications
Computers
Digital computers
Humanities and Social Sciences
Ising model
Learning algorithms
Machine learning
multidisciplinary
Neural networks
Optimization
Optoelectronics
Sampling
Science
Science (multidisciplinary)
Software
Statistical sampling
Statistics
Training
title Noise-injected analog Ising machines enable ultrafast statistical sampling and machine learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A22%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noise-injected%20analog%20Ising%20machines%20enable%20ultrafast%20statistical%20sampling%20and%20machine%20learning&rft.jtitle=Nature%20communications&rft.au=B%C3%B6hm,%20Fabian&rft.date=2022-10-04&rft.volume=13&rft.issue=1&rft.spage=5847&rft.epage=5847&rft.pages=5847-5847&rft.artnum=5847&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-022-33441-3&rft_dat=%3Cproquest_doaj_%3E2721078384%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c517t-b8b720ffd4cc5b1b3cb783d1d19ab12fe3ddcb56efcc9d6e81809a145384f8bd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2721078384&rft_id=info:pmid/36195589&rfr_iscdi=true