Loading…
Noise-injected analog Ising machines enable ultrafast statistical sampling and machine learning
Ising machines are a promising non-von-Neumann computational concept for neural network training and combinatorial optimization. However, while various neural networks can be implemented with Ising machines, their inability to perform fast statistical sampling makes them inefficient for training neu...
Saved in:
Published in: | Nature communications 2022-10, Vol.13 (1), p.5847-5847, Article 5847 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c517t-b8b720ffd4cc5b1b3cb783d1d19ab12fe3ddcb56efcc9d6e81809a145384f8bd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c517t-b8b720ffd4cc5b1b3cb783d1d19ab12fe3ddcb56efcc9d6e81809a145384f8bd3 |
container_end_page | 5847 |
container_issue | 1 |
container_start_page | 5847 |
container_title | Nature communications |
container_volume | 13 |
creator | Böhm, Fabian Alonso-Urquijo, Diego Verschaffelt, Guy Van der Sande, Guy |
description | Ising machines are a promising non-von-Neumann computational concept for neural network training and combinatorial optimization. However, while various neural networks can be implemented with Ising machines, their inability to perform fast statistical sampling makes them inefficient for training neural networks compared to digital computers. Here, we introduce a universal concept to achieve ultrafast statistical sampling with analog Ising machines by injecting noise. With an opto-electronic Ising machine, we experimentally demonstrate that this can be used for accurate sampling of Boltzmann distributions and for unsupervised training of neural networks, with equal accuracy as software-based training. Through simulations, we find that Ising machines can perform statistical sampling orders-of-magnitudes faster than software-based methods. This enables the use of Ising machines beyond combinatorial optimization and makes them into efficient tools for machine learning and other applications.
Ising machines are accelerators for computing difficult optimization problems. In this work, Böhm et al. demonstrate a method that extends their use to perform statistical sampling and machine learning orders-of-magnitudes faster than digital computers. |
doi_str_mv | 10.1038/s41467-022-33441-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ee60eee909df4e9c8aa1f7bff7d171c2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ee60eee909df4e9c8aa1f7bff7d171c2</doaj_id><sourcerecordid>2721078384</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-b8b720ffd4cc5b1b3cb783d1d19ab12fe3ddcb56efcc9d6e81809a145384f8bd3</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhi0EotXSP8ApEhcuAX8lsS9IqOJjpQoucLbG9jjNynEWO4vEv8fblI9yYC4ejd95NGO_hDxn9BWjQr0uksl-aCnnrRBSslY8Ipec1oQNXDz-K78gV6UcaA2hmZLyKbkQPdNdp_QlMZ-WqWA7pQO6FX0DCeIyNvsypbGZwd1OCUuDCWzE5hTXDAHK2pQV1qmsk4PYFJiP8SyH5H-1NBEhp1p8Rp4EiAWv7s8d-fr-3Zfrj-3N5w_767c3revYsLZW2YHTELx0rrPMCmcHJTzzTINlPKDw3tmux-Cc9j0qpqgGJjuhZFDWix3Zb1y_wMEc8zRD_mEWmMxdYcmjgVznjWgQe4qImmofJGqnAFgYbAiDZwNzvLLebKzjyc7oHaa6dnwAfXiTplszLt-N7gQXSlfAy3tAXr6dsKxmnorDGCHhciqGD5z1ohc1duTFP9LDcsr1EzYVra-gZFXxTeXyUkrG8HsYRs3ZDmazg6l2MHd2MGe02JpKFacR8x_0f7p-Ag_SuVw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2721078384</pqid></control><display><type>article</type><title>Noise-injected analog Ising machines enable ultrafast statistical sampling and machine learning</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central (Open access)</source><source>Springer Nature - Connect here FIRST to enable access</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Böhm, Fabian ; Alonso-Urquijo, Diego ; Verschaffelt, Guy ; Van der Sande, Guy</creator><creatorcontrib>Böhm, Fabian ; Alonso-Urquijo, Diego ; Verschaffelt, Guy ; Van der Sande, Guy</creatorcontrib><description>Ising machines are a promising non-von-Neumann computational concept for neural network training and combinatorial optimization. However, while various neural networks can be implemented with Ising machines, their inability to perform fast statistical sampling makes them inefficient for training neural networks compared to digital computers. Here, we introduce a universal concept to achieve ultrafast statistical sampling with analog Ising machines by injecting noise. With an opto-electronic Ising machine, we experimentally demonstrate that this can be used for accurate sampling of Boltzmann distributions and for unsupervised training of neural networks, with equal accuracy as software-based training. Through simulations, we find that Ising machines can perform statistical sampling orders-of-magnitudes faster than software-based methods. This enables the use of Ising machines beyond combinatorial optimization and makes them into efficient tools for machine learning and other applications.
Ising machines are accelerators for computing difficult optimization problems. In this work, Böhm et al. demonstrate a method that extends their use to perform statistical sampling and machine learning orders-of-magnitudes faster than digital computers.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-022-33441-3</identifier><identifier>PMID: 36195589</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1075/401 ; 639/705/117 ; 639/766/259 ; 639/766/530/2801 ; Combinatorial analysis ; Computer applications ; Computers ; Digital computers ; Humanities and Social Sciences ; Ising model ; Learning algorithms ; Machine learning ; multidisciplinary ; Neural networks ; Optimization ; Optoelectronics ; Sampling ; Science ; Science (multidisciplinary) ; Software ; Statistical sampling ; Statistics ; Training</subject><ispartof>Nature communications, 2022-10, Vol.13 (1), p.5847-5847, Article 5847</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-b8b720ffd4cc5b1b3cb783d1d19ab12fe3ddcb56efcc9d6e81809a145384f8bd3</citedby><cites>FETCH-LOGICAL-c517t-b8b720ffd4cc5b1b3cb783d1d19ab12fe3ddcb56efcc9d6e81809a145384f8bd3</cites><orcidid>0000-0002-6291-0646 ; 0000-0002-6724-2587 ; 0000-0001-8516-9785 ; 0000-0001-7635-1307</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2721078384/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2721078384?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids></links><search><creatorcontrib>Böhm, Fabian</creatorcontrib><creatorcontrib>Alonso-Urquijo, Diego</creatorcontrib><creatorcontrib>Verschaffelt, Guy</creatorcontrib><creatorcontrib>Van der Sande, Guy</creatorcontrib><title>Noise-injected analog Ising machines enable ultrafast statistical sampling and machine learning</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><description>Ising machines are a promising non-von-Neumann computational concept for neural network training and combinatorial optimization. However, while various neural networks can be implemented with Ising machines, their inability to perform fast statistical sampling makes them inefficient for training neural networks compared to digital computers. Here, we introduce a universal concept to achieve ultrafast statistical sampling with analog Ising machines by injecting noise. With an opto-electronic Ising machine, we experimentally demonstrate that this can be used for accurate sampling of Boltzmann distributions and for unsupervised training of neural networks, with equal accuracy as software-based training. Through simulations, we find that Ising machines can perform statistical sampling orders-of-magnitudes faster than software-based methods. This enables the use of Ising machines beyond combinatorial optimization and makes them into efficient tools for machine learning and other applications.
Ising machines are accelerators for computing difficult optimization problems. In this work, Böhm et al. demonstrate a method that extends their use to perform statistical sampling and machine learning orders-of-magnitudes faster than digital computers.</description><subject>639/624/1075/401</subject><subject>639/705/117</subject><subject>639/766/259</subject><subject>639/766/530/2801</subject><subject>Combinatorial analysis</subject><subject>Computer applications</subject><subject>Computers</subject><subject>Digital computers</subject><subject>Humanities and Social Sciences</subject><subject>Ising model</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>multidisciplinary</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Optoelectronics</subject><subject>Sampling</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Software</subject><subject>Statistical sampling</subject><subject>Statistics</subject><subject>Training</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1v1DAQhi0EotXSP8ApEhcuAX8lsS9IqOJjpQoucLbG9jjNynEWO4vEv8fblI9yYC4ejd95NGO_hDxn9BWjQr0uksl-aCnnrRBSslY8Ipec1oQNXDz-K78gV6UcaA2hmZLyKbkQPdNdp_QlMZ-WqWA7pQO6FX0DCeIyNvsypbGZwd1OCUuDCWzE5hTXDAHK2pQV1qmsk4PYFJiP8SyH5H-1NBEhp1p8Rp4EiAWv7s8d-fr-3Zfrj-3N5w_767c3revYsLZW2YHTELx0rrPMCmcHJTzzTINlPKDw3tmux-Cc9j0qpqgGJjuhZFDWix3Zb1y_wMEc8zRD_mEWmMxdYcmjgVznjWgQe4qImmofJGqnAFgYbAiDZwNzvLLebKzjyc7oHaa6dnwAfXiTplszLt-N7gQXSlfAy3tAXr6dsKxmnorDGCHhciqGD5z1ohc1duTFP9LDcsr1EzYVra-gZFXxTeXyUkrG8HsYRs3ZDmazg6l2MHd2MGe02JpKFacR8x_0f7p-Ag_SuVw</recordid><startdate>20221004</startdate><enddate>20221004</enddate><creator>Böhm, Fabian</creator><creator>Alonso-Urquijo, Diego</creator><creator>Verschaffelt, Guy</creator><creator>Van der Sande, Guy</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6291-0646</orcidid><orcidid>https://orcid.org/0000-0002-6724-2587</orcidid><orcidid>https://orcid.org/0000-0001-8516-9785</orcidid><orcidid>https://orcid.org/0000-0001-7635-1307</orcidid></search><sort><creationdate>20221004</creationdate><title>Noise-injected analog Ising machines enable ultrafast statistical sampling and machine learning</title><author>Böhm, Fabian ; Alonso-Urquijo, Diego ; Verschaffelt, Guy ; Van der Sande, Guy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-b8b720ffd4cc5b1b3cb783d1d19ab12fe3ddcb56efcc9d6e81809a145384f8bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>639/624/1075/401</topic><topic>639/705/117</topic><topic>639/766/259</topic><topic>639/766/530/2801</topic><topic>Combinatorial analysis</topic><topic>Computer applications</topic><topic>Computers</topic><topic>Digital computers</topic><topic>Humanities and Social Sciences</topic><topic>Ising model</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>multidisciplinary</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Optoelectronics</topic><topic>Sampling</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Software</topic><topic>Statistical sampling</topic><topic>Statistics</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Böhm, Fabian</creatorcontrib><creatorcontrib>Alonso-Urquijo, Diego</creatorcontrib><creatorcontrib>Verschaffelt, Guy</creatorcontrib><creatorcontrib>Van der Sande, Guy</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Böhm, Fabian</au><au>Alonso-Urquijo, Diego</au><au>Verschaffelt, Guy</au><au>Van der Sande, Guy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noise-injected analog Ising machines enable ultrafast statistical sampling and machine learning</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><date>2022-10-04</date><risdate>2022</risdate><volume>13</volume><issue>1</issue><spage>5847</spage><epage>5847</epage><pages>5847-5847</pages><artnum>5847</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Ising machines are a promising non-von-Neumann computational concept for neural network training and combinatorial optimization. However, while various neural networks can be implemented with Ising machines, their inability to perform fast statistical sampling makes them inefficient for training neural networks compared to digital computers. Here, we introduce a universal concept to achieve ultrafast statistical sampling with analog Ising machines by injecting noise. With an opto-electronic Ising machine, we experimentally demonstrate that this can be used for accurate sampling of Boltzmann distributions and for unsupervised training of neural networks, with equal accuracy as software-based training. Through simulations, we find that Ising machines can perform statistical sampling orders-of-magnitudes faster than software-based methods. This enables the use of Ising machines beyond combinatorial optimization and makes them into efficient tools for machine learning and other applications.
Ising machines are accelerators for computing difficult optimization problems. In this work, Böhm et al. demonstrate a method that extends their use to perform statistical sampling and machine learning orders-of-magnitudes faster than digital computers.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36195589</pmid><doi>10.1038/s41467-022-33441-3</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-6291-0646</orcidid><orcidid>https://orcid.org/0000-0002-6724-2587</orcidid><orcidid>https://orcid.org/0000-0001-8516-9785</orcidid><orcidid>https://orcid.org/0000-0001-7635-1307</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2022-10, Vol.13 (1), p.5847-5847, Article 5847 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ee60eee909df4e9c8aa1f7bff7d171c2 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central (Open access); Springer Nature - Connect here FIRST to enable access; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/624/1075/401 639/705/117 639/766/259 639/766/530/2801 Combinatorial analysis Computer applications Computers Digital computers Humanities and Social Sciences Ising model Learning algorithms Machine learning multidisciplinary Neural networks Optimization Optoelectronics Sampling Science Science (multidisciplinary) Software Statistical sampling Statistics Training |
title | Noise-injected analog Ising machines enable ultrafast statistical sampling and machine learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A22%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noise-injected%20analog%20Ising%20machines%20enable%20ultrafast%20statistical%20sampling%20and%20machine%20learning&rft.jtitle=Nature%20communications&rft.au=B%C3%B6hm,%20Fabian&rft.date=2022-10-04&rft.volume=13&rft.issue=1&rft.spage=5847&rft.epage=5847&rft.pages=5847-5847&rft.artnum=5847&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-022-33441-3&rft_dat=%3Cproquest_doaj_%3E2721078384%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c517t-b8b720ffd4cc5b1b3cb783d1d19ab12fe3ddcb56efcc9d6e81809a145384f8bd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2721078384&rft_id=info:pmid/36195589&rfr_iscdi=true |