Loading…

GPS-SBAS-Based Orbit Determination for Low Earth Orbiting Satellites

A space-based augmentation system (SBAS) provides real-time GNSS correction signals via geostationary satellites for near-ground GNSS users. To use the SBAS correction for low Earth orbit (LEO) satellites, the correction, especially the ionosphere correction, must be adjusted for the LEO altitude. W...

Full description

Saved in:
Bibliographic Details
Published in:International journal of aerospace engineering 2023-10, Vol.2023, p.1-9
Main Authors: Kim, Mingyu, Kim, Jeongrae
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c461t-5909bbcec32c90b024b4199a8d6d556806c4faf9c970183fb389e24ea3d008f73
container_end_page 9
container_issue
container_start_page 1
container_title International journal of aerospace engineering
container_volume 2023
creator Kim, Mingyu
Kim, Jeongrae
description A space-based augmentation system (SBAS) provides real-time GNSS correction signals via geostationary satellites for near-ground GNSS users. To use the SBAS correction for low Earth orbit (LEO) satellites, the correction, especially the ionosphere correction, must be adjusted for the LEO altitude. We apply modified SBAS data to LEO satellite onboard navigator to improve the positioning accuracy of a LEO satellite for possible real-time use. The onboard navigator requires high positioning reliability, and code pseudoranges, rather than phase pseudoranges, are used for the primary measurements. The Galileo NeQuick G model is used to determine the real-time conversion factor of the SBAS ionosphere correction for a LEO satellite. The GPS L1 data from GRACE satellite are combined with the SBAS data from the ground receiver. The onboard navigator combines the precise satellite dynamic model with an extended Kalman filter to improve positioning accuracy and stability. The kinematic positioning method, which uses the weighted least square method without the dynamic model, is also performed for comparison. The SBAS correction reduces the positioning error in both the kinematic positioning and the dynamic positioning. The positioning error reduction of the GPS and WAAS case over the GPS-only case is 25.2% for the kinematic method and 30.6% for the dynamic method. In the case of the dynamic method with the SBAS corrections, the positioning error remains smaller than that of the GPS-only dynamic method even after the satellite has left the SBAS service area.
doi_str_mv 10.1155/2023/3033205
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ee7c2cf4c43548e4a54b3e8184599842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ee7c2cf4c43548e4a54b3e8184599842</doaj_id><sourcerecordid>2886122611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-5909bbcec32c90b024b4199a8d6d556806c4faf9c970183fb389e24ea3d008f73</originalsourceid><addsrcrecordid>eNp9kE1LAzEYhBdRsFZv_oAFj7o235sc-2UtFCqsnkM2m21T2k1NUor_3q1bevT0Di8PM8MkySMErxBSOkAA4QEGGCNAr5IeZDzPqMjJ9UUzdpvchbABgAGa014ymX0UWTEaFtlIBVOlS1_amE5MNH5nGxWta9La-XThjulU-bjuCNus0kJFs93aaMJ9clOrbTAP59tPvt6mn-P3bLGczcfDRaYJg7GNB6IstdEYaQFKgEhJoBCKV6yilHHANKlVLbTIAeS4LjEXBhGjcAUAr3PcT-adb-XURu693Sn_I52y8u_h_Eq2Fa3eGmlMrpGuiSaYEm6IoqTEhkNOqBCcoNbrqfPae_d9MCHKjTv4pq0vEecMIsQgbKmXjtLeheBNfUmFQJ42l6fN5XnzFn_u8LVtKnW0_9O_a_99fA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2886122611</pqid></control><display><type>article</type><title>GPS-SBAS-Based Orbit Determination for Low Earth Orbiting Satellites</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Open Access: Wiley-Blackwell Open Access Journals</source><creator>Kim, Mingyu ; Kim, Jeongrae</creator><contributor>Lorenzini, Enrico C. ; Enrico C Lorenzini</contributor><creatorcontrib>Kim, Mingyu ; Kim, Jeongrae ; Lorenzini, Enrico C. ; Enrico C Lorenzini</creatorcontrib><description>A space-based augmentation system (SBAS) provides real-time GNSS correction signals via geostationary satellites for near-ground GNSS users. To use the SBAS correction for low Earth orbit (LEO) satellites, the correction, especially the ionosphere correction, must be adjusted for the LEO altitude. We apply modified SBAS data to LEO satellite onboard navigator to improve the positioning accuracy of a LEO satellite for possible real-time use. The onboard navigator requires high positioning reliability, and code pseudoranges, rather than phase pseudoranges, are used for the primary measurements. The Galileo NeQuick G model is used to determine the real-time conversion factor of the SBAS ionosphere correction for a LEO satellite. The GPS L1 data from GRACE satellite are combined with the SBAS data from the ground receiver. The onboard navigator combines the precise satellite dynamic model with an extended Kalman filter to improve positioning accuracy and stability. The kinematic positioning method, which uses the weighted least square method without the dynamic model, is also performed for comparison. The SBAS correction reduces the positioning error in both the kinematic positioning and the dynamic positioning. The positioning error reduction of the GPS and WAAS case over the GPS-only case is 25.2% for the kinematic method and 30.6% for the dynamic method. In the case of the dynamic method with the SBAS corrections, the positioning error remains smaller than that of the GPS-only dynamic method even after the satellite has left the SBAS service area.</description><identifier>ISSN: 1687-5966</identifier><identifier>EISSN: 1687-5974</identifier><identifier>DOI: 10.1155/2023/3033205</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Accuracy ; Aerospace engineering ; Aircraft ; Dynamic models ; Error correction ; Error reduction ; Extended Kalman filter ; Global navigation satellite system ; Global positioning systems ; GPS ; GRACE (experiment) ; Ionosphere ; Kinematics ; Low earth orbit satellites ; Low earth orbits ; Orbit determination ; Real time ; Satellite navigation systems ; Service areas ; Space Based Augmentation Systems ; Synchronous satellites ; Time use</subject><ispartof>International journal of aerospace engineering, 2023-10, Vol.2023, p.1-9</ispartof><rights>Copyright © 2023 Mingyu Kim and Jeongrae Kim.</rights><rights>Copyright © 2023 Mingyu Kim and Jeongrae Kim. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c461t-5909bbcec32c90b024b4199a8d6d556806c4faf9c970183fb389e24ea3d008f73</cites><orcidid>0000-0001-5070-7336 ; 0000-0002-5065-0197</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2886122611/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2886122611?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Lorenzini, Enrico C.</contributor><contributor>Enrico C Lorenzini</contributor><creatorcontrib>Kim, Mingyu</creatorcontrib><creatorcontrib>Kim, Jeongrae</creatorcontrib><title>GPS-SBAS-Based Orbit Determination for Low Earth Orbiting Satellites</title><title>International journal of aerospace engineering</title><description>A space-based augmentation system (SBAS) provides real-time GNSS correction signals via geostationary satellites for near-ground GNSS users. To use the SBAS correction for low Earth orbit (LEO) satellites, the correction, especially the ionosphere correction, must be adjusted for the LEO altitude. We apply modified SBAS data to LEO satellite onboard navigator to improve the positioning accuracy of a LEO satellite for possible real-time use. The onboard navigator requires high positioning reliability, and code pseudoranges, rather than phase pseudoranges, are used for the primary measurements. The Galileo NeQuick G model is used to determine the real-time conversion factor of the SBAS ionosphere correction for a LEO satellite. The GPS L1 data from GRACE satellite are combined with the SBAS data from the ground receiver. The onboard navigator combines the precise satellite dynamic model with an extended Kalman filter to improve positioning accuracy and stability. The kinematic positioning method, which uses the weighted least square method without the dynamic model, is also performed for comparison. The SBAS correction reduces the positioning error in both the kinematic positioning and the dynamic positioning. The positioning error reduction of the GPS and WAAS case over the GPS-only case is 25.2% for the kinematic method and 30.6% for the dynamic method. In the case of the dynamic method with the SBAS corrections, the positioning error remains smaller than that of the GPS-only dynamic method even after the satellite has left the SBAS service area.</description><subject>Accuracy</subject><subject>Aerospace engineering</subject><subject>Aircraft</subject><subject>Dynamic models</subject><subject>Error correction</subject><subject>Error reduction</subject><subject>Extended Kalman filter</subject><subject>Global navigation satellite system</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>GRACE (experiment)</subject><subject>Ionosphere</subject><subject>Kinematics</subject><subject>Low earth orbit satellites</subject><subject>Low earth orbits</subject><subject>Orbit determination</subject><subject>Real time</subject><subject>Satellite navigation systems</subject><subject>Service areas</subject><subject>Space Based Augmentation Systems</subject><subject>Synchronous satellites</subject><subject>Time use</subject><issn>1687-5966</issn><issn>1687-5974</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kE1LAzEYhBdRsFZv_oAFj7o235sc-2UtFCqsnkM2m21T2k1NUor_3q1bevT0Di8PM8MkySMErxBSOkAA4QEGGCNAr5IeZDzPqMjJ9UUzdpvchbABgAGa014ymX0UWTEaFtlIBVOlS1_amE5MNH5nGxWta9La-XThjulU-bjuCNus0kJFs93aaMJ9clOrbTAP59tPvt6mn-P3bLGczcfDRaYJg7GNB6IstdEYaQFKgEhJoBCKV6yilHHANKlVLbTIAeS4LjEXBhGjcAUAr3PcT-adb-XURu693Sn_I52y8u_h_Eq2Fa3eGmlMrpGuiSaYEm6IoqTEhkNOqBCcoNbrqfPae_d9MCHKjTv4pq0vEecMIsQgbKmXjtLeheBNfUmFQJ42l6fN5XnzFn_u8LVtKnW0_9O_a_99fA</recordid><startdate>20231026</startdate><enddate>20231026</enddate><creator>Kim, Mingyu</creator><creator>Kim, Jeongrae</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5070-7336</orcidid><orcidid>https://orcid.org/0000-0002-5065-0197</orcidid></search><sort><creationdate>20231026</creationdate><title>GPS-SBAS-Based Orbit Determination for Low Earth Orbiting Satellites</title><author>Kim, Mingyu ; Kim, Jeongrae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-5909bbcec32c90b024b4199a8d6d556806c4faf9c970183fb389e24ea3d008f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Aerospace engineering</topic><topic>Aircraft</topic><topic>Dynamic models</topic><topic>Error correction</topic><topic>Error reduction</topic><topic>Extended Kalman filter</topic><topic>Global navigation satellite system</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>GRACE (experiment)</topic><topic>Ionosphere</topic><topic>Kinematics</topic><topic>Low earth orbit satellites</topic><topic>Low earth orbits</topic><topic>Orbit determination</topic><topic>Real time</topic><topic>Satellite navigation systems</topic><topic>Service areas</topic><topic>Space Based Augmentation Systems</topic><topic>Synchronous satellites</topic><topic>Time use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Mingyu</creatorcontrib><creatorcontrib>Kim, Jeongrae</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of aerospace engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Mingyu</au><au>Kim, Jeongrae</au><au>Lorenzini, Enrico C.</au><au>Enrico C Lorenzini</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GPS-SBAS-Based Orbit Determination for Low Earth Orbiting Satellites</atitle><jtitle>International journal of aerospace engineering</jtitle><date>2023-10-26</date><risdate>2023</risdate><volume>2023</volume><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1687-5966</issn><eissn>1687-5974</eissn><abstract>A space-based augmentation system (SBAS) provides real-time GNSS correction signals via geostationary satellites for near-ground GNSS users. To use the SBAS correction for low Earth orbit (LEO) satellites, the correction, especially the ionosphere correction, must be adjusted for the LEO altitude. We apply modified SBAS data to LEO satellite onboard navigator to improve the positioning accuracy of a LEO satellite for possible real-time use. The onboard navigator requires high positioning reliability, and code pseudoranges, rather than phase pseudoranges, are used for the primary measurements. The Galileo NeQuick G model is used to determine the real-time conversion factor of the SBAS ionosphere correction for a LEO satellite. The GPS L1 data from GRACE satellite are combined with the SBAS data from the ground receiver. The onboard navigator combines the precise satellite dynamic model with an extended Kalman filter to improve positioning accuracy and stability. The kinematic positioning method, which uses the weighted least square method without the dynamic model, is also performed for comparison. The SBAS correction reduces the positioning error in both the kinematic positioning and the dynamic positioning. The positioning error reduction of the GPS and WAAS case over the GPS-only case is 25.2% for the kinematic method and 30.6% for the dynamic method. In the case of the dynamic method with the SBAS corrections, the positioning error remains smaller than that of the GPS-only dynamic method even after the satellite has left the SBAS service area.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2023/3033205</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5070-7336</orcidid><orcidid>https://orcid.org/0000-0002-5065-0197</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-5966
ispartof International journal of aerospace engineering, 2023-10, Vol.2023, p.1-9
issn 1687-5966
1687-5974
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ee7c2cf4c43548e4a54b3e8184599842
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); Open Access: Wiley-Blackwell Open Access Journals
subjects Accuracy
Aerospace engineering
Aircraft
Dynamic models
Error correction
Error reduction
Extended Kalman filter
Global navigation satellite system
Global positioning systems
GPS
GRACE (experiment)
Ionosphere
Kinematics
Low earth orbit satellites
Low earth orbits
Orbit determination
Real time
Satellite navigation systems
Service areas
Space Based Augmentation Systems
Synchronous satellites
Time use
title GPS-SBAS-Based Orbit Determination for Low Earth Orbiting Satellites
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T03%3A34%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GPS-SBAS-Based%20Orbit%20Determination%20for%20Low%20Earth%20Orbiting%20Satellites&rft.jtitle=International%20journal%20of%20aerospace%20engineering&rft.au=Kim,%20Mingyu&rft.date=2023-10-26&rft.volume=2023&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1687-5966&rft.eissn=1687-5974&rft_id=info:doi/10.1155/2023/3033205&rft_dat=%3Cproquest_doaj_%3E2886122611%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c461t-5909bbcec32c90b024b4199a8d6d556806c4faf9c970183fb389e24ea3d008f73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2886122611&rft_id=info:pmid/&rfr_iscdi=true