Loading…

On Horadam Sequences with Dense Orbits and Pseudo-Random Number Generators

Horadam sequence is a general recurrence of second order in the complex plane, depending on four complex parameters (two initial values and two recurrence coefficients). These sequences have been investigated over more than 60 years, but new properties and applications are still being discovered. Sm...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics (Basel) 2023-03, Vol.11 (5), p.1244
Main Authors: Bagdasar, Ovidiu, Chen, Minsi, Drăgan, Vasile, Ivanov, Ivan Ganchev, Popa, Ioan-Lucian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c406t-f714cf943a036c19d3d8edfe4335eaa06d672ddc04033c680a57d12fb630d58f3
cites cdi_FETCH-LOGICAL-c406t-f714cf943a036c19d3d8edfe4335eaa06d672ddc04033c680a57d12fb630d58f3
container_end_page
container_issue 5
container_start_page 1244
container_title Mathematics (Basel)
container_volume 11
creator Bagdasar, Ovidiu
Chen, Minsi
Drăgan, Vasile
Ivanov, Ivan Ganchev
Popa, Ioan-Lucian
description Horadam sequence is a general recurrence of second order in the complex plane, depending on four complex parameters (two initial values and two recurrence coefficients). These sequences have been investigated over more than 60 years, but new properties and applications are still being discovered. Small parameter variations may dramatically impact the sequence orbits, generating numerous patterns: periodic, convergent, divergent, or dense within one dimensional curves. Here we explore Horadam sequences whose orbit is dense within a 2D region of the complex plane, while the complex argument is uniformly distributed in an interval. This enables the design of a pseudo-random number generator (PRNG) for the uniform distribution, for which we test periodicity, correlation, Monte Carlo estimation of π, and the NIST battery of tests. We then calculate the probability distribution of the radii of the sequence terms of Horadam sequences. Finally, we propose extensions of these results for generalized Horadam sequences of third order.
doi_str_mv 10.3390/math11051244
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_eeaf3bd8a76a4831a91455a72489795a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A741845504</galeid><doaj_id>oai_doaj_org_article_eeaf3bd8a76a4831a91455a72489795a</doaj_id><sourcerecordid>A741845504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-f714cf943a036c19d3d8edfe4335eaa06d672ddc04033c680a57d12fb630d58f3</originalsourceid><addsrcrecordid>eNpNkUtPwzAMxysEEhNw4wNE4kohrzbpceIxQIghHufISxzWaW0gaYX49gSG0OyDLdv_n2y5KI4ZPROioecdDEvGaMW4lDvFhHOuSpUbu1v5fnGU0opma5jQspkUd_Oe3IQIDjryjB8j9hYT-WyHJbnEPiGZx0U7JAK9I48JRxfKp5yHjjyM3QIjmWGPEYYQ02Gx52Gd8OgvHhSv11cvFzfl_Xx2ezG9L62k9VB6xaT1jRRARW1Z44TT6DxKISoEoLWrFXfOUkmFsLWmUCnHuF_UgrpKe3FQ3G64LsDKvMe2g_hlArTmtxDim4E4tHaNBhG8WDgNqgapBYOGyaoCxaVuVFNBZp1sWO8x5OPTYFZhjH1e33ClK05lzVieOttMvUGGtr0PQwSb3WHX2tCjb3N9qiTTGU9lFpxuBDaGlCL6_zUZNT_fMtvfEt-5m4Wf</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785204611</pqid></control><display><type>article</type><title>On Horadam Sequences with Dense Orbits and Pseudo-Random Number Generators</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Bagdasar, Ovidiu ; Chen, Minsi ; Drăgan, Vasile ; Ivanov, Ivan Ganchev ; Popa, Ioan-Lucian</creator><creatorcontrib>Bagdasar, Ovidiu ; Chen, Minsi ; Drăgan, Vasile ; Ivanov, Ivan Ganchev ; Popa, Ioan-Lucian</creatorcontrib><description>Horadam sequence is a general recurrence of second order in the complex plane, depending on four complex parameters (two initial values and two recurrence coefficients). These sequences have been investigated over more than 60 years, but new properties and applications are still being discovered. Small parameter variations may dramatically impact the sequence orbits, generating numerous patterns: periodic, convergent, divergent, or dense within one dimensional curves. Here we explore Horadam sequences whose orbit is dense within a 2D region of the complex plane, while the complex argument is uniformly distributed in an interval. This enables the design of a pseudo-random number generator (PRNG) for the uniform distribution, for which we test periodicity, correlation, Monte Carlo estimation of π, and the NIST battery of tests. We then calculate the probability distribution of the radii of the sequence terms of Horadam sequences. Finally, we propose extensions of these results for generalized Horadam sequences of third order.</description><identifier>ISSN: 2227-7390</identifier><identifier>EISSN: 2227-7390</identifier><identifier>DOI: 10.3390/math11051244</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; complex recurrent sequences ; dense orbits ; Food science ; Generators ; geometric patterns ; Horadam sequence ; Investigations ; Mathematical analysis ; Numbers, Random ; Orbits ; Parameters ; Periodic variations ; Pseudorandom ; Random numbers ; Sequences ; Sequences (Mathematics) ; Simulation</subject><ispartof>Mathematics (Basel), 2023-03, Vol.11 (5), p.1244</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-f714cf943a036c19d3d8edfe4335eaa06d672ddc04033c680a57d12fb630d58f3</citedby><cites>FETCH-LOGICAL-c406t-f714cf943a036c19d3d8edfe4335eaa06d672ddc04033c680a57d12fb630d58f3</cites><orcidid>0000-0003-4193-9842 ; 0000-0001-8042-1806 ; 0000-0002-9019-072X ; 0000-0001-6628-1421</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2785204611/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2785204611?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,74998</link.rule.ids></links><search><creatorcontrib>Bagdasar, Ovidiu</creatorcontrib><creatorcontrib>Chen, Minsi</creatorcontrib><creatorcontrib>Drăgan, Vasile</creatorcontrib><creatorcontrib>Ivanov, Ivan Ganchev</creatorcontrib><creatorcontrib>Popa, Ioan-Lucian</creatorcontrib><title>On Horadam Sequences with Dense Orbits and Pseudo-Random Number Generators</title><title>Mathematics (Basel)</title><description>Horadam sequence is a general recurrence of second order in the complex plane, depending on four complex parameters (two initial values and two recurrence coefficients). These sequences have been investigated over more than 60 years, but new properties and applications are still being discovered. Small parameter variations may dramatically impact the sequence orbits, generating numerous patterns: periodic, convergent, divergent, or dense within one dimensional curves. Here we explore Horadam sequences whose orbit is dense within a 2D region of the complex plane, while the complex argument is uniformly distributed in an interval. This enables the design of a pseudo-random number generator (PRNG) for the uniform distribution, for which we test periodicity, correlation, Monte Carlo estimation of π, and the NIST battery of tests. We then calculate the probability distribution of the radii of the sequence terms of Horadam sequences. Finally, we propose extensions of these results for generalized Horadam sequences of third order.</description><subject>Algorithms</subject><subject>complex recurrent sequences</subject><subject>dense orbits</subject><subject>Food science</subject><subject>Generators</subject><subject>geometric patterns</subject><subject>Horadam sequence</subject><subject>Investigations</subject><subject>Mathematical analysis</subject><subject>Numbers, Random</subject><subject>Orbits</subject><subject>Parameters</subject><subject>Periodic variations</subject><subject>Pseudorandom</subject><subject>Random numbers</subject><subject>Sequences</subject><subject>Sequences (Mathematics)</subject><subject>Simulation</subject><issn>2227-7390</issn><issn>2227-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUtPwzAMxysEEhNw4wNE4kohrzbpceIxQIghHufISxzWaW0gaYX49gSG0OyDLdv_n2y5KI4ZPROioecdDEvGaMW4lDvFhHOuSpUbu1v5fnGU0opma5jQspkUd_Oe3IQIDjryjB8j9hYT-WyHJbnEPiGZx0U7JAK9I48JRxfKp5yHjjyM3QIjmWGPEYYQ02Gx52Gd8OgvHhSv11cvFzfl_Xx2ezG9L62k9VB6xaT1jRRARW1Z44TT6DxKISoEoLWrFXfOUkmFsLWmUCnHuF_UgrpKe3FQ3G64LsDKvMe2g_hlArTmtxDim4E4tHaNBhG8WDgNqgapBYOGyaoCxaVuVFNBZp1sWO8x5OPTYFZhjH1e33ClK05lzVieOttMvUGGtr0PQwSb3WHX2tCjb3N9qiTTGU9lFpxuBDaGlCL6_zUZNT_fMtvfEt-5m4Wf</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Bagdasar, Ovidiu</creator><creator>Chen, Minsi</creator><creator>Drăgan, Vasile</creator><creator>Ivanov, Ivan Ganchev</creator><creator>Popa, Ioan-Lucian</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4193-9842</orcidid><orcidid>https://orcid.org/0000-0001-8042-1806</orcidid><orcidid>https://orcid.org/0000-0002-9019-072X</orcidid><orcidid>https://orcid.org/0000-0001-6628-1421</orcidid></search><sort><creationdate>20230301</creationdate><title>On Horadam Sequences with Dense Orbits and Pseudo-Random Number Generators</title><author>Bagdasar, Ovidiu ; Chen, Minsi ; Drăgan, Vasile ; Ivanov, Ivan Ganchev ; Popa, Ioan-Lucian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-f714cf943a036c19d3d8edfe4335eaa06d672ddc04033c680a57d12fb630d58f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>complex recurrent sequences</topic><topic>dense orbits</topic><topic>Food science</topic><topic>Generators</topic><topic>geometric patterns</topic><topic>Horadam sequence</topic><topic>Investigations</topic><topic>Mathematical analysis</topic><topic>Numbers, Random</topic><topic>Orbits</topic><topic>Parameters</topic><topic>Periodic variations</topic><topic>Pseudorandom</topic><topic>Random numbers</topic><topic>Sequences</topic><topic>Sequences (Mathematics)</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bagdasar, Ovidiu</creatorcontrib><creatorcontrib>Chen, Minsi</creatorcontrib><creatorcontrib>Drăgan, Vasile</creatorcontrib><creatorcontrib>Ivanov, Ivan Ganchev</creatorcontrib><creatorcontrib>Popa, Ioan-Lucian</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Mathematics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bagdasar, Ovidiu</au><au>Chen, Minsi</au><au>Drăgan, Vasile</au><au>Ivanov, Ivan Ganchev</au><au>Popa, Ioan-Lucian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Horadam Sequences with Dense Orbits and Pseudo-Random Number Generators</atitle><jtitle>Mathematics (Basel)</jtitle><date>2023-03-01</date><risdate>2023</risdate><volume>11</volume><issue>5</issue><spage>1244</spage><pages>1244-</pages><issn>2227-7390</issn><eissn>2227-7390</eissn><abstract>Horadam sequence is a general recurrence of second order in the complex plane, depending on four complex parameters (two initial values and two recurrence coefficients). These sequences have been investigated over more than 60 years, but new properties and applications are still being discovered. Small parameter variations may dramatically impact the sequence orbits, generating numerous patterns: periodic, convergent, divergent, or dense within one dimensional curves. Here we explore Horadam sequences whose orbit is dense within a 2D region of the complex plane, while the complex argument is uniformly distributed in an interval. This enables the design of a pseudo-random number generator (PRNG) for the uniform distribution, for which we test periodicity, correlation, Monte Carlo estimation of π, and the NIST battery of tests. We then calculate the probability distribution of the radii of the sequence terms of Horadam sequences. Finally, we propose extensions of these results for generalized Horadam sequences of third order.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/math11051244</doi><orcidid>https://orcid.org/0000-0003-4193-9842</orcidid><orcidid>https://orcid.org/0000-0001-8042-1806</orcidid><orcidid>https://orcid.org/0000-0002-9019-072X</orcidid><orcidid>https://orcid.org/0000-0001-6628-1421</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-7390
ispartof Mathematics (Basel), 2023-03, Vol.11 (5), p.1244
issn 2227-7390
2227-7390
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_eeaf3bd8a76a4831a91455a72489795a
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Algorithms
complex recurrent sequences
dense orbits
Food science
Generators
geometric patterns
Horadam sequence
Investigations
Mathematical analysis
Numbers, Random
Orbits
Parameters
Periodic variations
Pseudorandom
Random numbers
Sequences
Sequences (Mathematics)
Simulation
title On Horadam Sequences with Dense Orbits and Pseudo-Random Number Generators
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A21%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Horadam%20Sequences%20with%20Dense%20Orbits%20and%20Pseudo-Random%20Number%20Generators&rft.jtitle=Mathematics%20(Basel)&rft.au=Bagdasar,%20Ovidiu&rft.date=2023-03-01&rft.volume=11&rft.issue=5&rft.spage=1244&rft.pages=1244-&rft.issn=2227-7390&rft.eissn=2227-7390&rft_id=info:doi/10.3390/math11051244&rft_dat=%3Cgale_doaj_%3EA741845504%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c406t-f714cf943a036c19d3d8edfe4335eaa06d672ddc04033c680a57d12fb630d58f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2785204611&rft_id=info:pmid/&rft_galeid=A741845504&rfr_iscdi=true