Loading…
On Horadam Sequences with Dense Orbits and Pseudo-Random Number Generators
Horadam sequence is a general recurrence of second order in the complex plane, depending on four complex parameters (two initial values and two recurrence coefficients). These sequences have been investigated over more than 60 years, but new properties and applications are still being discovered. Sm...
Saved in:
Published in: | Mathematics (Basel) 2023-03, Vol.11 (5), p.1244 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c406t-f714cf943a036c19d3d8edfe4335eaa06d672ddc04033c680a57d12fb630d58f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c406t-f714cf943a036c19d3d8edfe4335eaa06d672ddc04033c680a57d12fb630d58f3 |
container_end_page | |
container_issue | 5 |
container_start_page | 1244 |
container_title | Mathematics (Basel) |
container_volume | 11 |
creator | Bagdasar, Ovidiu Chen, Minsi Drăgan, Vasile Ivanov, Ivan Ganchev Popa, Ioan-Lucian |
description | Horadam sequence is a general recurrence of second order in the complex plane, depending on four complex parameters (two initial values and two recurrence coefficients). These sequences have been investigated over more than 60 years, but new properties and applications are still being discovered. Small parameter variations may dramatically impact the sequence orbits, generating numerous patterns: periodic, convergent, divergent, or dense within one dimensional curves. Here we explore Horadam sequences whose orbit is dense within a 2D region of the complex plane, while the complex argument is uniformly distributed in an interval. This enables the design of a pseudo-random number generator (PRNG) for the uniform distribution, for which we test periodicity, correlation, Monte Carlo estimation of π, and the NIST battery of tests. We then calculate the probability distribution of the radii of the sequence terms of Horadam sequences. Finally, we propose extensions of these results for generalized Horadam sequences of third order. |
doi_str_mv | 10.3390/math11051244 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_eeaf3bd8a76a4831a91455a72489795a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A741845504</galeid><doaj_id>oai_doaj_org_article_eeaf3bd8a76a4831a91455a72489795a</doaj_id><sourcerecordid>A741845504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-f714cf943a036c19d3d8edfe4335eaa06d672ddc04033c680a57d12fb630d58f3</originalsourceid><addsrcrecordid>eNpNkUtPwzAMxysEEhNw4wNE4kohrzbpceIxQIghHufISxzWaW0gaYX49gSG0OyDLdv_n2y5KI4ZPROioecdDEvGaMW4lDvFhHOuSpUbu1v5fnGU0opma5jQspkUd_Oe3IQIDjryjB8j9hYT-WyHJbnEPiGZx0U7JAK9I48JRxfKp5yHjjyM3QIjmWGPEYYQ02Gx52Gd8OgvHhSv11cvFzfl_Xx2ezG9L62k9VB6xaT1jRRARW1Z44TT6DxKISoEoLWrFXfOUkmFsLWmUCnHuF_UgrpKe3FQ3G64LsDKvMe2g_hlArTmtxDim4E4tHaNBhG8WDgNqgapBYOGyaoCxaVuVFNBZp1sWO8x5OPTYFZhjH1e33ClK05lzVieOttMvUGGtr0PQwSb3WHX2tCjb3N9qiTTGU9lFpxuBDaGlCL6_zUZNT_fMtvfEt-5m4Wf</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785204611</pqid></control><display><type>article</type><title>On Horadam Sequences with Dense Orbits and Pseudo-Random Number Generators</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Bagdasar, Ovidiu ; Chen, Minsi ; Drăgan, Vasile ; Ivanov, Ivan Ganchev ; Popa, Ioan-Lucian</creator><creatorcontrib>Bagdasar, Ovidiu ; Chen, Minsi ; Drăgan, Vasile ; Ivanov, Ivan Ganchev ; Popa, Ioan-Lucian</creatorcontrib><description>Horadam sequence is a general recurrence of second order in the complex plane, depending on four complex parameters (two initial values and two recurrence coefficients). These sequences have been investigated over more than 60 years, but new properties and applications are still being discovered. Small parameter variations may dramatically impact the sequence orbits, generating numerous patterns: periodic, convergent, divergent, or dense within one dimensional curves. Here we explore Horadam sequences whose orbit is dense within a 2D region of the complex plane, while the complex argument is uniformly distributed in an interval. This enables the design of a pseudo-random number generator (PRNG) for the uniform distribution, for which we test periodicity, correlation, Monte Carlo estimation of π, and the NIST battery of tests. We then calculate the probability distribution of the radii of the sequence terms of Horadam sequences. Finally, we propose extensions of these results for generalized Horadam sequences of third order.</description><identifier>ISSN: 2227-7390</identifier><identifier>EISSN: 2227-7390</identifier><identifier>DOI: 10.3390/math11051244</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; complex recurrent sequences ; dense orbits ; Food science ; Generators ; geometric patterns ; Horadam sequence ; Investigations ; Mathematical analysis ; Numbers, Random ; Orbits ; Parameters ; Periodic variations ; Pseudorandom ; Random numbers ; Sequences ; Sequences (Mathematics) ; Simulation</subject><ispartof>Mathematics (Basel), 2023-03, Vol.11 (5), p.1244</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-f714cf943a036c19d3d8edfe4335eaa06d672ddc04033c680a57d12fb630d58f3</citedby><cites>FETCH-LOGICAL-c406t-f714cf943a036c19d3d8edfe4335eaa06d672ddc04033c680a57d12fb630d58f3</cites><orcidid>0000-0003-4193-9842 ; 0000-0001-8042-1806 ; 0000-0002-9019-072X ; 0000-0001-6628-1421</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2785204611/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2785204611?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,74998</link.rule.ids></links><search><creatorcontrib>Bagdasar, Ovidiu</creatorcontrib><creatorcontrib>Chen, Minsi</creatorcontrib><creatorcontrib>Drăgan, Vasile</creatorcontrib><creatorcontrib>Ivanov, Ivan Ganchev</creatorcontrib><creatorcontrib>Popa, Ioan-Lucian</creatorcontrib><title>On Horadam Sequences with Dense Orbits and Pseudo-Random Number Generators</title><title>Mathematics (Basel)</title><description>Horadam sequence is a general recurrence of second order in the complex plane, depending on four complex parameters (two initial values and two recurrence coefficients). These sequences have been investigated over more than 60 years, but new properties and applications are still being discovered. Small parameter variations may dramatically impact the sequence orbits, generating numerous patterns: periodic, convergent, divergent, or dense within one dimensional curves. Here we explore Horadam sequences whose orbit is dense within a 2D region of the complex plane, while the complex argument is uniformly distributed in an interval. This enables the design of a pseudo-random number generator (PRNG) for the uniform distribution, for which we test periodicity, correlation, Monte Carlo estimation of π, and the NIST battery of tests. We then calculate the probability distribution of the radii of the sequence terms of Horadam sequences. Finally, we propose extensions of these results for generalized Horadam sequences of third order.</description><subject>Algorithms</subject><subject>complex recurrent sequences</subject><subject>dense orbits</subject><subject>Food science</subject><subject>Generators</subject><subject>geometric patterns</subject><subject>Horadam sequence</subject><subject>Investigations</subject><subject>Mathematical analysis</subject><subject>Numbers, Random</subject><subject>Orbits</subject><subject>Parameters</subject><subject>Periodic variations</subject><subject>Pseudorandom</subject><subject>Random numbers</subject><subject>Sequences</subject><subject>Sequences (Mathematics)</subject><subject>Simulation</subject><issn>2227-7390</issn><issn>2227-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUtPwzAMxysEEhNw4wNE4kohrzbpceIxQIghHufISxzWaW0gaYX49gSG0OyDLdv_n2y5KI4ZPROioecdDEvGaMW4lDvFhHOuSpUbu1v5fnGU0opma5jQspkUd_Oe3IQIDjryjB8j9hYT-WyHJbnEPiGZx0U7JAK9I48JRxfKp5yHjjyM3QIjmWGPEYYQ02Gx52Gd8OgvHhSv11cvFzfl_Xx2ezG9L62k9VB6xaT1jRRARW1Z44TT6DxKISoEoLWrFXfOUkmFsLWmUCnHuF_UgrpKe3FQ3G64LsDKvMe2g_hlArTmtxDim4E4tHaNBhG8WDgNqgapBYOGyaoCxaVuVFNBZp1sWO8x5OPTYFZhjH1e33ClK05lzVieOttMvUGGtr0PQwSb3WHX2tCjb3N9qiTTGU9lFpxuBDaGlCL6_zUZNT_fMtvfEt-5m4Wf</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Bagdasar, Ovidiu</creator><creator>Chen, Minsi</creator><creator>Drăgan, Vasile</creator><creator>Ivanov, Ivan Ganchev</creator><creator>Popa, Ioan-Lucian</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4193-9842</orcidid><orcidid>https://orcid.org/0000-0001-8042-1806</orcidid><orcidid>https://orcid.org/0000-0002-9019-072X</orcidid><orcidid>https://orcid.org/0000-0001-6628-1421</orcidid></search><sort><creationdate>20230301</creationdate><title>On Horadam Sequences with Dense Orbits and Pseudo-Random Number Generators</title><author>Bagdasar, Ovidiu ; Chen, Minsi ; Drăgan, Vasile ; Ivanov, Ivan Ganchev ; Popa, Ioan-Lucian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-f714cf943a036c19d3d8edfe4335eaa06d672ddc04033c680a57d12fb630d58f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>complex recurrent sequences</topic><topic>dense orbits</topic><topic>Food science</topic><topic>Generators</topic><topic>geometric patterns</topic><topic>Horadam sequence</topic><topic>Investigations</topic><topic>Mathematical analysis</topic><topic>Numbers, Random</topic><topic>Orbits</topic><topic>Parameters</topic><topic>Periodic variations</topic><topic>Pseudorandom</topic><topic>Random numbers</topic><topic>Sequences</topic><topic>Sequences (Mathematics)</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bagdasar, Ovidiu</creatorcontrib><creatorcontrib>Chen, Minsi</creatorcontrib><creatorcontrib>Drăgan, Vasile</creatorcontrib><creatorcontrib>Ivanov, Ivan Ganchev</creatorcontrib><creatorcontrib>Popa, Ioan-Lucian</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Mathematics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bagdasar, Ovidiu</au><au>Chen, Minsi</au><au>Drăgan, Vasile</au><au>Ivanov, Ivan Ganchev</au><au>Popa, Ioan-Lucian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Horadam Sequences with Dense Orbits and Pseudo-Random Number Generators</atitle><jtitle>Mathematics (Basel)</jtitle><date>2023-03-01</date><risdate>2023</risdate><volume>11</volume><issue>5</issue><spage>1244</spage><pages>1244-</pages><issn>2227-7390</issn><eissn>2227-7390</eissn><abstract>Horadam sequence is a general recurrence of second order in the complex plane, depending on four complex parameters (two initial values and two recurrence coefficients). These sequences have been investigated over more than 60 years, but new properties and applications are still being discovered. Small parameter variations may dramatically impact the sequence orbits, generating numerous patterns: periodic, convergent, divergent, or dense within one dimensional curves. Here we explore Horadam sequences whose orbit is dense within a 2D region of the complex plane, while the complex argument is uniformly distributed in an interval. This enables the design of a pseudo-random number generator (PRNG) for the uniform distribution, for which we test periodicity, correlation, Monte Carlo estimation of π, and the NIST battery of tests. We then calculate the probability distribution of the radii of the sequence terms of Horadam sequences. Finally, we propose extensions of these results for generalized Horadam sequences of third order.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/math11051244</doi><orcidid>https://orcid.org/0000-0003-4193-9842</orcidid><orcidid>https://orcid.org/0000-0001-8042-1806</orcidid><orcidid>https://orcid.org/0000-0002-9019-072X</orcidid><orcidid>https://orcid.org/0000-0001-6628-1421</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-7390 |
ispartof | Mathematics (Basel), 2023-03, Vol.11 (5), p.1244 |
issn | 2227-7390 2227-7390 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_eeaf3bd8a76a4831a91455a72489795a |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Algorithms complex recurrent sequences dense orbits Food science Generators geometric patterns Horadam sequence Investigations Mathematical analysis Numbers, Random Orbits Parameters Periodic variations Pseudorandom Random numbers Sequences Sequences (Mathematics) Simulation |
title | On Horadam Sequences with Dense Orbits and Pseudo-Random Number Generators |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A21%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Horadam%20Sequences%20with%20Dense%20Orbits%20and%20Pseudo-Random%20Number%20Generators&rft.jtitle=Mathematics%20(Basel)&rft.au=Bagdasar,%20Ovidiu&rft.date=2023-03-01&rft.volume=11&rft.issue=5&rft.spage=1244&rft.pages=1244-&rft.issn=2227-7390&rft.eissn=2227-7390&rft_id=info:doi/10.3390/math11051244&rft_dat=%3Cgale_doaj_%3EA741845504%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c406t-f714cf943a036c19d3d8edfe4335eaa06d672ddc04033c680a57d12fb630d58f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2785204611&rft_id=info:pmid/&rft_galeid=A741845504&rfr_iscdi=true |