Loading…
Generative adversarial network based adaptive data augmentation for handwritten Arabic text recognition
Training deep learning based handwritten text recognition systems needs a lot of data in terms of text images and their corresponding annotations. One way to deal with this issue is to use data augmentation techniques to increase the amount of training data. Generative Adversarial Networks (GANs) ba...
Saved in:
Published in: | PeerJ. Computer science 2022-01, Vol.8, p.e861-e861, Article e861 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Training deep learning based handwritten text recognition systems needs a lot of data in terms of text images and their corresponding annotations. One way to deal with this issue is to use data augmentation techniques to increase the amount of training data. Generative Adversarial Networks (GANs) based data augmentation techniques are popular in literature especially in tasks related to images. However, specific challenges need to be addressed in order to effectively use GANs for data augmentation in the domain of text recognition. Text data is inherently imbalanced in terms of frequency of different characters appearing in training samples and the training data as a whole. GANs trained on the imbalanced dataset leads to augmented data that does not represent the minority characters well. In this paper, we present an adaptive data augmentation technique using GANs that deals with the issue of class imbalance arising in text recognition problems. We show, using experimental evaluations on two publicly available datasets for handwritten Arabic text recognition, that the GANs trained using the presented technique is effective in dealing with class imbalanced problem by generating augmented data that is balanced in terms of character frequencies. The resulting text recognition systems trained on the balanced augmented data improves the text recognition accuracy as compared to the systems trained using standard techniques. |
---|---|
ISSN: | 2376-5992 2376-5992 |
DOI: | 10.7717/peerj-cs.861 |