Loading…

Analysis of the CPZ/Wnt4 osteogenic pathway for high-bonding-strength composite-coated magnesium scaffolds through transcriptomics

Magnesium (Mg)-based scaffolds are garnering increasing attention as bone repair materials owing to their biodegradability and mechanical resemblance to natural bone. Their effectiveness can be augmented by incorporating surface coatings to meet clinical needs. However, the limited bonding strength...

Full description

Saved in:
Bibliographic Details
Published in:Materials today bio 2024-10, Vol.28, p.101234, Article 101234
Main Authors: Shi, Zewen, Yang, Fang, Du, Tianyu, Pang, Qian, Liu, Chen, Hu, Yiwei, Zhu, Weilai, Chen, Xianjun, Chen, Zeming, Song, Baiyang, Yu, Xueqiang, Ye, Zhewei, Shi, Lin, Zhu, Yabin, Pang, Qingjiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c350t-ab6bc05d3c32b119a3ba48ce9d88f9202fe09b5492c38b76c59ab74aa3f9b6d43
container_end_page
container_issue
container_start_page 101234
container_title Materials today bio
container_volume 28
creator Shi, Zewen
Yang, Fang
Du, Tianyu
Pang, Qian
Liu, Chen
Hu, Yiwei
Zhu, Weilai
Chen, Xianjun
Chen, Zeming
Song, Baiyang
Yu, Xueqiang
Ye, Zhewei
Shi, Lin
Zhu, Yabin
Pang, Qingjiang
description Magnesium (Mg)-based scaffolds are garnering increasing attention as bone repair materials owing to their biodegradability and mechanical resemblance to natural bone. Their effectiveness can be augmented by incorporating surface coatings to meet clinical needs. However, the limited bonding strength and unclear mechanisms of these coatings have impeded the clinical utility of scaffolds. To address these issues, this study introduces a composite coating of high-bonding-strength polydopamine-microarc oxidation (PDA-MHA) on Mg-based scaffolds. The results showed that the PDA-MHA coating achieved a bonding strength of 40.56 ± 1.426 MPa with the Mg scaffold surface, effectively enhancing hydrophilicity and controlling degradation rates. Furthermore, the scaffold facilitated bone regeneration by influencing osteogenic markers such as RUNX-2, OPN, OCN, and VEGF. Transcriptomic analyses further demonstrated that the PDA-MHA/Mg scaffold upregulated carboxypeptidase Z expression and activated the Wnt-4/β-catenin signaling pathway, thereby promoting bone regeneration. Overall, this study demonstrated that PDA can synergistically enhance bone repair with Mg scaffold, broadening the application scenarios of Mg and PDA in the field of biomaterials. Moreover, this study provides a theoretical underpinning for the application and clinical translation of Mg-based scaffolds in bone tissue engineering endeavors. [Display omitted]
doi_str_mv 10.1016/j.mtbio.2024.101234
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_eedbc2ee174147f5acf445f9f2f85abe</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2590006424002953</els_id><doaj_id>oai_doaj_org_article_eedbc2ee174147f5acf445f9f2f85abe</doaj_id><sourcerecordid>3108390533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-ab6bc05d3c32b119a3ba48ce9d88f9202fe09b5492c38b76c59ab74aa3f9b6d43</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxSMEolXpJ0BCPnLJ1o6dPz5wqFZAK1WCAwiJizV2xolXSRxsp2ivfPJmm1Jx4jSj0Zv3NPPLsreM7hhl1dVhNybt_K6ghThNCi5eZOdFKWlOaSVe_tOfZZcxHiilRS0FpfJ1dsYlp5JV5Xn253qC4RhdJN6S1CPZf_159WNKgviY0Hc4OUNmSP1vOBLrA-ld1-faT62bujymgFOXemL8OPvoEubGQ8KWjNBNGN0ykmjAWj-0cbUPful6kgJM0QQ3Jz86E99krywMES-f6kX2_dPHb_ub_O7L59v99V1ueElTDrrShpYtN7zQjEngGkRjULZNY-X6B4tU6lLIwvBG15UpJehaAHArddUKfpHdbr6th4OagxshHJUHpx4HPnQKQnJmQIXYalMgslowUdsSjBWitNIWtilB4-r1fvOag_-1YExqdNHgMMCEfomKM9pwSUvOVynfpCb4GAPa52hG1YmlOqhHlurEUm0s1613TwGLHrF93vlLbhV82AS4vuzeYVDROJwMti6gSetN7r8BD8ixtCU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3108390533</pqid></control><display><type>article</type><title>Analysis of the CPZ/Wnt4 osteogenic pathway for high-bonding-strength composite-coated magnesium scaffolds through transcriptomics</title><source>Open Access: PubMed Central</source><source>ScienceDirect (Online service)</source><creator>Shi, Zewen ; Yang, Fang ; Du, Tianyu ; Pang, Qian ; Liu, Chen ; Hu, Yiwei ; Zhu, Weilai ; Chen, Xianjun ; Chen, Zeming ; Song, Baiyang ; Yu, Xueqiang ; Ye, Zhewei ; Shi, Lin ; Zhu, Yabin ; Pang, Qingjiang</creator><creatorcontrib>Shi, Zewen ; Yang, Fang ; Du, Tianyu ; Pang, Qian ; Liu, Chen ; Hu, Yiwei ; Zhu, Weilai ; Chen, Xianjun ; Chen, Zeming ; Song, Baiyang ; Yu, Xueqiang ; Ye, Zhewei ; Shi, Lin ; Zhu, Yabin ; Pang, Qingjiang</creatorcontrib><description>Magnesium (Mg)-based scaffolds are garnering increasing attention as bone repair materials owing to their biodegradability and mechanical resemblance to natural bone. Their effectiveness can be augmented by incorporating surface coatings to meet clinical needs. However, the limited bonding strength and unclear mechanisms of these coatings have impeded the clinical utility of scaffolds. To address these issues, this study introduces a composite coating of high-bonding-strength polydopamine-microarc oxidation (PDA-MHA) on Mg-based scaffolds. The results showed that the PDA-MHA coating achieved a bonding strength of 40.56 ± 1.426 MPa with the Mg scaffold surface, effectively enhancing hydrophilicity and controlling degradation rates. Furthermore, the scaffold facilitated bone regeneration by influencing osteogenic markers such as RUNX-2, OPN, OCN, and VEGF. Transcriptomic analyses further demonstrated that the PDA-MHA/Mg scaffold upregulated carboxypeptidase Z expression and activated the Wnt-4/β-catenin signaling pathway, thereby promoting bone regeneration. Overall, this study demonstrated that PDA can synergistically enhance bone repair with Mg scaffold, broadening the application scenarios of Mg and PDA in the field of biomaterials. Moreover, this study provides a theoretical underpinning for the application and clinical translation of Mg-based scaffolds in bone tissue engineering endeavors. [Display omitted]</description><identifier>ISSN: 2590-0064</identifier><identifier>EISSN: 2590-0064</identifier><identifier>DOI: 10.1016/j.mtbio.2024.101234</identifier><identifier>PMID: 39309165</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Carboxypeptidase Z ; High-bonding-strength coating ; Magnesium ; Osteogenesis ; Polydopamine</subject><ispartof>Materials today bio, 2024-10, Vol.28, p.101234, Article 101234</ispartof><rights>2024 The Authors</rights><rights>2024 The Authors. Published by Elsevier Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c350t-ab6bc05d3c32b119a3ba48ce9d88f9202fe09b5492c38b76c59ab74aa3f9b6d43</cites><orcidid>0000-0001-6108-4680 ; 0000-0001-5327-1486</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2590006424002953$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39309165$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shi, Zewen</creatorcontrib><creatorcontrib>Yang, Fang</creatorcontrib><creatorcontrib>Du, Tianyu</creatorcontrib><creatorcontrib>Pang, Qian</creatorcontrib><creatorcontrib>Liu, Chen</creatorcontrib><creatorcontrib>Hu, Yiwei</creatorcontrib><creatorcontrib>Zhu, Weilai</creatorcontrib><creatorcontrib>Chen, Xianjun</creatorcontrib><creatorcontrib>Chen, Zeming</creatorcontrib><creatorcontrib>Song, Baiyang</creatorcontrib><creatorcontrib>Yu, Xueqiang</creatorcontrib><creatorcontrib>Ye, Zhewei</creatorcontrib><creatorcontrib>Shi, Lin</creatorcontrib><creatorcontrib>Zhu, Yabin</creatorcontrib><creatorcontrib>Pang, Qingjiang</creatorcontrib><title>Analysis of the CPZ/Wnt4 osteogenic pathway for high-bonding-strength composite-coated magnesium scaffolds through transcriptomics</title><title>Materials today bio</title><addtitle>Mater Today Bio</addtitle><description>Magnesium (Mg)-based scaffolds are garnering increasing attention as bone repair materials owing to their biodegradability and mechanical resemblance to natural bone. Their effectiveness can be augmented by incorporating surface coatings to meet clinical needs. However, the limited bonding strength and unclear mechanisms of these coatings have impeded the clinical utility of scaffolds. To address these issues, this study introduces a composite coating of high-bonding-strength polydopamine-microarc oxidation (PDA-MHA) on Mg-based scaffolds. The results showed that the PDA-MHA coating achieved a bonding strength of 40.56 ± 1.426 MPa with the Mg scaffold surface, effectively enhancing hydrophilicity and controlling degradation rates. Furthermore, the scaffold facilitated bone regeneration by influencing osteogenic markers such as RUNX-2, OPN, OCN, and VEGF. Transcriptomic analyses further demonstrated that the PDA-MHA/Mg scaffold upregulated carboxypeptidase Z expression and activated the Wnt-4/β-catenin signaling pathway, thereby promoting bone regeneration. Overall, this study demonstrated that PDA can synergistically enhance bone repair with Mg scaffold, broadening the application scenarios of Mg and PDA in the field of biomaterials. Moreover, this study provides a theoretical underpinning for the application and clinical translation of Mg-based scaffolds in bone tissue engineering endeavors. [Display omitted]</description><subject>Carboxypeptidase Z</subject><subject>High-bonding-strength coating</subject><subject>Magnesium</subject><subject>Osteogenesis</subject><subject>Polydopamine</subject><issn>2590-0064</issn><issn>2590-0064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kU9v1DAQxSMEolXpJ0BCPnLJ1o6dPz5wqFZAK1WCAwiJizV2xolXSRxsp2ivfPJmm1Jx4jSj0Zv3NPPLsreM7hhl1dVhNybt_K6ghThNCi5eZOdFKWlOaSVe_tOfZZcxHiilRS0FpfJ1dsYlp5JV5Xn253qC4RhdJN6S1CPZf_159WNKgviY0Hc4OUNmSP1vOBLrA-ld1-faT62bujymgFOXemL8OPvoEubGQ8KWjNBNGN0ykmjAWj-0cbUPful6kgJM0QQ3Jz86E99krywMES-f6kX2_dPHb_ub_O7L59v99V1ueElTDrrShpYtN7zQjEngGkRjULZNY-X6B4tU6lLIwvBG15UpJehaAHArddUKfpHdbr6th4OagxshHJUHpx4HPnQKQnJmQIXYalMgslowUdsSjBWitNIWtilB4-r1fvOag_-1YExqdNHgMMCEfomKM9pwSUvOVynfpCb4GAPa52hG1YmlOqhHlurEUm0s1613TwGLHrF93vlLbhV82AS4vuzeYVDROJwMti6gSetN7r8BD8ixtCU</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Shi, Zewen</creator><creator>Yang, Fang</creator><creator>Du, Tianyu</creator><creator>Pang, Qian</creator><creator>Liu, Chen</creator><creator>Hu, Yiwei</creator><creator>Zhu, Weilai</creator><creator>Chen, Xianjun</creator><creator>Chen, Zeming</creator><creator>Song, Baiyang</creator><creator>Yu, Xueqiang</creator><creator>Ye, Zhewei</creator><creator>Shi, Lin</creator><creator>Zhu, Yabin</creator><creator>Pang, Qingjiang</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6108-4680</orcidid><orcidid>https://orcid.org/0000-0001-5327-1486</orcidid></search><sort><creationdate>202410</creationdate><title>Analysis of the CPZ/Wnt4 osteogenic pathway for high-bonding-strength composite-coated magnesium scaffolds through transcriptomics</title><author>Shi, Zewen ; Yang, Fang ; Du, Tianyu ; Pang, Qian ; Liu, Chen ; Hu, Yiwei ; Zhu, Weilai ; Chen, Xianjun ; Chen, Zeming ; Song, Baiyang ; Yu, Xueqiang ; Ye, Zhewei ; Shi, Lin ; Zhu, Yabin ; Pang, Qingjiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-ab6bc05d3c32b119a3ba48ce9d88f9202fe09b5492c38b76c59ab74aa3f9b6d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carboxypeptidase Z</topic><topic>High-bonding-strength coating</topic><topic>Magnesium</topic><topic>Osteogenesis</topic><topic>Polydopamine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Zewen</creatorcontrib><creatorcontrib>Yang, Fang</creatorcontrib><creatorcontrib>Du, Tianyu</creatorcontrib><creatorcontrib>Pang, Qian</creatorcontrib><creatorcontrib>Liu, Chen</creatorcontrib><creatorcontrib>Hu, Yiwei</creatorcontrib><creatorcontrib>Zhu, Weilai</creatorcontrib><creatorcontrib>Chen, Xianjun</creatorcontrib><creatorcontrib>Chen, Zeming</creatorcontrib><creatorcontrib>Song, Baiyang</creatorcontrib><creatorcontrib>Yu, Xueqiang</creatorcontrib><creatorcontrib>Ye, Zhewei</creatorcontrib><creatorcontrib>Shi, Lin</creatorcontrib><creatorcontrib>Zhu, Yabin</creatorcontrib><creatorcontrib>Pang, Qingjiang</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Materials today bio</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Zewen</au><au>Yang, Fang</au><au>Du, Tianyu</au><au>Pang, Qian</au><au>Liu, Chen</au><au>Hu, Yiwei</au><au>Zhu, Weilai</au><au>Chen, Xianjun</au><au>Chen, Zeming</au><au>Song, Baiyang</au><au>Yu, Xueqiang</au><au>Ye, Zhewei</au><au>Shi, Lin</au><au>Zhu, Yabin</au><au>Pang, Qingjiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of the CPZ/Wnt4 osteogenic pathway for high-bonding-strength composite-coated magnesium scaffolds through transcriptomics</atitle><jtitle>Materials today bio</jtitle><addtitle>Mater Today Bio</addtitle><date>2024-10</date><risdate>2024</risdate><volume>28</volume><spage>101234</spage><pages>101234-</pages><artnum>101234</artnum><issn>2590-0064</issn><eissn>2590-0064</eissn><abstract>Magnesium (Mg)-based scaffolds are garnering increasing attention as bone repair materials owing to their biodegradability and mechanical resemblance to natural bone. Their effectiveness can be augmented by incorporating surface coatings to meet clinical needs. However, the limited bonding strength and unclear mechanisms of these coatings have impeded the clinical utility of scaffolds. To address these issues, this study introduces a composite coating of high-bonding-strength polydopamine-microarc oxidation (PDA-MHA) on Mg-based scaffolds. The results showed that the PDA-MHA coating achieved a bonding strength of 40.56 ± 1.426 MPa with the Mg scaffold surface, effectively enhancing hydrophilicity and controlling degradation rates. Furthermore, the scaffold facilitated bone regeneration by influencing osteogenic markers such as RUNX-2, OPN, OCN, and VEGF. Transcriptomic analyses further demonstrated that the PDA-MHA/Mg scaffold upregulated carboxypeptidase Z expression and activated the Wnt-4/β-catenin signaling pathway, thereby promoting bone regeneration. Overall, this study demonstrated that PDA can synergistically enhance bone repair with Mg scaffold, broadening the application scenarios of Mg and PDA in the field of biomaterials. Moreover, this study provides a theoretical underpinning for the application and clinical translation of Mg-based scaffolds in bone tissue engineering endeavors. [Display omitted]</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>39309165</pmid><doi>10.1016/j.mtbio.2024.101234</doi><orcidid>https://orcid.org/0000-0001-6108-4680</orcidid><orcidid>https://orcid.org/0000-0001-5327-1486</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2590-0064
ispartof Materials today bio, 2024-10, Vol.28, p.101234, Article 101234
issn 2590-0064
2590-0064
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_eedbc2ee174147f5acf445f9f2f85abe
source Open Access: PubMed Central; ScienceDirect (Online service)
subjects Carboxypeptidase Z
High-bonding-strength coating
Magnesium
Osteogenesis
Polydopamine
title Analysis of the CPZ/Wnt4 osteogenic pathway for high-bonding-strength composite-coated magnesium scaffolds through transcriptomics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A46%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20the%20CPZ/Wnt4%20osteogenic%20pathway%20for%20high-bonding-strength%20composite-coated%20magnesium%20scaffolds%20through%20transcriptomics&rft.jtitle=Materials%20today%20bio&rft.au=Shi,%20Zewen&rft.date=2024-10&rft.volume=28&rft.spage=101234&rft.pages=101234-&rft.artnum=101234&rft.issn=2590-0064&rft.eissn=2590-0064&rft_id=info:doi/10.1016/j.mtbio.2024.101234&rft_dat=%3Cproquest_doaj_%3E3108390533%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-ab6bc05d3c32b119a3ba48ce9d88f9202fe09b5492c38b76c59ab74aa3f9b6d43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3108390533&rft_id=info:pmid/39309165&rfr_iscdi=true