Loading…

An experimental validation of a new shape optimization technique for piezoelectric harvesting cantilever beams

The piezoelectric energy harvester efficiency depends on optimizing the cantilever geometry and tuning its natural frequency with vibration source frequency. Moreover, the effect of harvester parameters on natural frequency is vital in tuning the resonance frequency. So, a COMSOL Multi-physics finit...

Full description

Saved in:
Bibliographic Details
Published in:Alexandria engineering journal 2021-02, Vol.60 (1), p.1751-1766
Main Authors: Mohamed, Khaled, Elgamal, Hassan, Kouritem, Sallam A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c406t-7ec7367efea91bd8f83a23aadca29becbb825467c222ae5317a7f2a4815845e93
cites cdi_FETCH-LOGICAL-c406t-7ec7367efea91bd8f83a23aadca29becbb825467c222ae5317a7f2a4815845e93
container_end_page 1766
container_issue 1
container_start_page 1751
container_title Alexandria engineering journal
container_volume 60
creator Mohamed, Khaled
Elgamal, Hassan
Kouritem, Sallam A.
description The piezoelectric energy harvester efficiency depends on optimizing the cantilever geometry and tuning its natural frequency with vibration source frequency. Moreover, the effect of harvester parameters on natural frequency is vital in tuning the resonance frequency. So, a COMSOL Multi-physics finite element analysis, Eigen frequency study and analytical analysis using MATLAB were constructed to calculate the resonance frequencies and to analyze the harvester parameters effect. Five harvester different shapes, namely, the T-shaped, rectangular, L-shaped, variable width, and triangular cantilevers were optimized using the genetic algorithm. The simulation of the five shapes was implemented using COMSOL. The results indicated that the T- shaped cantilever produced the largest power. Due to its high power and inclusive shape, the T-shaped cantilever with variable width was optimized using the COMSOL optimization module (BOBYQA). Linking genetic algorithm and COMSOL optimization module has highly improved the output power. The COMSOL results were validated using an experimental setup of piezoelectric cantilevers. The experimental setup was employed to calculate the voltage of the base excited harvester with very low excitation frequencies from 0.5 to 10 Hz. Also, the experimental setup investigated the effect of the tip mass, length of the cantilever, and piezoelectric material volume on the output voltage.
doi_str_mv 10.1016/j.aej.2020.11.024
format article
fullrecord <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_eee79bae4b234cdf80d8b5cfe56b28a9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1110016820306062</els_id><doaj_id>oai_doaj_org_article_eee79bae4b234cdf80d8b5cfe56b28a9</doaj_id><sourcerecordid>S1110016820306062</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-7ec7367efea91bd8f83a23aadca29becbb825467c222ae5317a7f2a4815845e93</originalsourceid><addsrcrecordid>eNp9kM1uFDEQhOcAUqKQB8jNL7CL7fnziFMU8RMpEhc4W21POevRrD3YZoE8PV4WcaQvre5Wlbq-prkTfC-4GN4ue8Kyl1zWWey57F4110IIvqtHddXc5rzwWv04ddNw3YT7wPBzQ_JHhEIrO9HqZyo-BhYdIxbwg-UDbWBxK_7oXy63AnsI_tt3MBcT2zxeIlbYkrxlB0on5OLDM7MUil9xQmIGdMxvmteO1ozbv_2m-frh_ZeHT7unzx8fH-6fdrbjQ9mNsGM7jHCgSZhZOdWSbIlmS3IysMYo2XfDaKWUhL4VI41OUqdEr7oeU3vTPF5850iL3mo6Sr90JK__LGJ61pSKtys0gHEyhM7ItrOzU3xWprcO_WCkorOXuHjZFHNOcP_8BNdn5nrRlbk-M9dC6Mq8at5dNKghTx5JZ-sRLGafKqX6hf-P-jf4w49I</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An experimental validation of a new shape optimization technique for piezoelectric harvesting cantilever beams</title><source>ScienceDirect - Connect here FIRST to enable access</source><creator>Mohamed, Khaled ; Elgamal, Hassan ; Kouritem, Sallam A.</creator><creatorcontrib>Mohamed, Khaled ; Elgamal, Hassan ; Kouritem, Sallam A.</creatorcontrib><description>The piezoelectric energy harvester efficiency depends on optimizing the cantilever geometry and tuning its natural frequency with vibration source frequency. Moreover, the effect of harvester parameters on natural frequency is vital in tuning the resonance frequency. So, a COMSOL Multi-physics finite element analysis, Eigen frequency study and analytical analysis using MATLAB were constructed to calculate the resonance frequencies and to analyze the harvester parameters effect. Five harvester different shapes, namely, the T-shaped, rectangular, L-shaped, variable width, and triangular cantilevers were optimized using the genetic algorithm. The simulation of the five shapes was implemented using COMSOL. The results indicated that the T- shaped cantilever produced the largest power. Due to its high power and inclusive shape, the T-shaped cantilever with variable width was optimized using the COMSOL optimization module (BOBYQA). Linking genetic algorithm and COMSOL optimization module has highly improved the output power. The COMSOL results were validated using an experimental setup of piezoelectric cantilevers. The experimental setup was employed to calculate the voltage of the base excited harvester with very low excitation frequencies from 0.5 to 10 Hz. Also, the experimental setup investigated the effect of the tip mass, length of the cantilever, and piezoelectric material volume on the output voltage.</description><identifier>ISSN: 1110-0168</identifier><identifier>DOI: 10.1016/j.aej.2020.11.024</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>COMSOL optimization module ; Energy harvesting ; Experimental setup ; Piezoelectric cantilever beam ; Shape optimization</subject><ispartof>Alexandria engineering journal, 2021-02, Vol.60 (1), p.1751-1766</ispartof><rights>2020 THE AUTHORS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-7ec7367efea91bd8f83a23aadca29becbb825467c222ae5317a7f2a4815845e93</citedby><cites>FETCH-LOGICAL-c406t-7ec7367efea91bd8f83a23aadca29becbb825467c222ae5317a7f2a4815845e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1110016820306062$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3547,27922,27923,45778</link.rule.ids></links><search><creatorcontrib>Mohamed, Khaled</creatorcontrib><creatorcontrib>Elgamal, Hassan</creatorcontrib><creatorcontrib>Kouritem, Sallam A.</creatorcontrib><title>An experimental validation of a new shape optimization technique for piezoelectric harvesting cantilever beams</title><title>Alexandria engineering journal</title><description>The piezoelectric energy harvester efficiency depends on optimizing the cantilever geometry and tuning its natural frequency with vibration source frequency. Moreover, the effect of harvester parameters on natural frequency is vital in tuning the resonance frequency. So, a COMSOL Multi-physics finite element analysis, Eigen frequency study and analytical analysis using MATLAB were constructed to calculate the resonance frequencies and to analyze the harvester parameters effect. Five harvester different shapes, namely, the T-shaped, rectangular, L-shaped, variable width, and triangular cantilevers were optimized using the genetic algorithm. The simulation of the five shapes was implemented using COMSOL. The results indicated that the T- shaped cantilever produced the largest power. Due to its high power and inclusive shape, the T-shaped cantilever with variable width was optimized using the COMSOL optimization module (BOBYQA). Linking genetic algorithm and COMSOL optimization module has highly improved the output power. The COMSOL results were validated using an experimental setup of piezoelectric cantilevers. The experimental setup was employed to calculate the voltage of the base excited harvester with very low excitation frequencies from 0.5 to 10 Hz. Also, the experimental setup investigated the effect of the tip mass, length of the cantilever, and piezoelectric material volume on the output voltage.</description><subject>COMSOL optimization module</subject><subject>Energy harvesting</subject><subject>Experimental setup</subject><subject>Piezoelectric cantilever beam</subject><subject>Shape optimization</subject><issn>1110-0168</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kM1uFDEQhOcAUqKQB8jNL7CL7fnziFMU8RMpEhc4W21POevRrD3YZoE8PV4WcaQvre5Wlbq-prkTfC-4GN4ue8Kyl1zWWey57F4110IIvqtHddXc5rzwWv04ddNw3YT7wPBzQ_JHhEIrO9HqZyo-BhYdIxbwg-UDbWBxK_7oXy63AnsI_tt3MBcT2zxeIlbYkrxlB0on5OLDM7MUil9xQmIGdMxvmteO1ozbv_2m-frh_ZeHT7unzx8fH-6fdrbjQ9mNsGM7jHCgSZhZOdWSbIlmS3IysMYo2XfDaKWUhL4VI41OUqdEr7oeU3vTPF5850iL3mo6Sr90JK__LGJ61pSKtys0gHEyhM7ItrOzU3xWprcO_WCkorOXuHjZFHNOcP_8BNdn5nrRlbk-M9dC6Mq8at5dNKghTx5JZ-sRLGafKqX6hf-P-jf4w49I</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Mohamed, Khaled</creator><creator>Elgamal, Hassan</creator><creator>Kouritem, Sallam A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>202102</creationdate><title>An experimental validation of a new shape optimization technique for piezoelectric harvesting cantilever beams</title><author>Mohamed, Khaled ; Elgamal, Hassan ; Kouritem, Sallam A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-7ec7367efea91bd8f83a23aadca29becbb825467c222ae5317a7f2a4815845e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>COMSOL optimization module</topic><topic>Energy harvesting</topic><topic>Experimental setup</topic><topic>Piezoelectric cantilever beam</topic><topic>Shape optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohamed, Khaled</creatorcontrib><creatorcontrib>Elgamal, Hassan</creatorcontrib><creatorcontrib>Kouritem, Sallam A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Directory of Open Access Journals</collection><jtitle>Alexandria engineering journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohamed, Khaled</au><au>Elgamal, Hassan</au><au>Kouritem, Sallam A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An experimental validation of a new shape optimization technique for piezoelectric harvesting cantilever beams</atitle><jtitle>Alexandria engineering journal</jtitle><date>2021-02</date><risdate>2021</risdate><volume>60</volume><issue>1</issue><spage>1751</spage><epage>1766</epage><pages>1751-1766</pages><issn>1110-0168</issn><abstract>The piezoelectric energy harvester efficiency depends on optimizing the cantilever geometry and tuning its natural frequency with vibration source frequency. Moreover, the effect of harvester parameters on natural frequency is vital in tuning the resonance frequency. So, a COMSOL Multi-physics finite element analysis, Eigen frequency study and analytical analysis using MATLAB were constructed to calculate the resonance frequencies and to analyze the harvester parameters effect. Five harvester different shapes, namely, the T-shaped, rectangular, L-shaped, variable width, and triangular cantilevers were optimized using the genetic algorithm. The simulation of the five shapes was implemented using COMSOL. The results indicated that the T- shaped cantilever produced the largest power. Due to its high power and inclusive shape, the T-shaped cantilever with variable width was optimized using the COMSOL optimization module (BOBYQA). Linking genetic algorithm and COMSOL optimization module has highly improved the output power. The COMSOL results were validated using an experimental setup of piezoelectric cantilevers. The experimental setup was employed to calculate the voltage of the base excited harvester with very low excitation frequencies from 0.5 to 10 Hz. Also, the experimental setup investigated the effect of the tip mass, length of the cantilever, and piezoelectric material volume on the output voltage.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.aej.2020.11.024</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1110-0168
ispartof Alexandria engineering journal, 2021-02, Vol.60 (1), p.1751-1766
issn 1110-0168
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_eee79bae4b234cdf80d8b5cfe56b28a9
source ScienceDirect - Connect here FIRST to enable access
subjects COMSOL optimization module
Energy harvesting
Experimental setup
Piezoelectric cantilever beam
Shape optimization
title An experimental validation of a new shape optimization technique for piezoelectric harvesting cantilever beams
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T11%3A46%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20experimental%20validation%20of%20a%20new%20shape%20optimization%20technique%20for%20piezoelectric%20harvesting%20cantilever%20beams&rft.jtitle=Alexandria%20engineering%20journal&rft.au=Mohamed,%20Khaled&rft.date=2021-02&rft.volume=60&rft.issue=1&rft.spage=1751&rft.epage=1766&rft.pages=1751-1766&rft.issn=1110-0168&rft_id=info:doi/10.1016/j.aej.2020.11.024&rft_dat=%3Celsevier_doaj_%3ES1110016820306062%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c406t-7ec7367efea91bd8f83a23aadca29becbb825467c222ae5317a7f2a4815845e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true