Loading…
An Empirical Study of Carbon Emission Impact Factors Based on the Vector Autoregression Model
It is important to effectively reduce carbon emissions and ensure the simultaneous adjustment of economic development and environmental protection. Therefore, we used Kaya identity to screen the factors influencing carbon emissions and conducted preliminary qualitative analyses, including grey relat...
Saved in:
Published in: | Energies (Basel) 2021-11, Vol.14 (22), p.7797 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c361t-a7641a9227d83f7bd4a503fea0ecb7ecaa41318e4379fb514ee8e75dea1cf0293 |
---|---|
cites | cdi_FETCH-LOGICAL-c361t-a7641a9227d83f7bd4a503fea0ecb7ecaa41318e4379fb514ee8e75dea1cf0293 |
container_end_page | |
container_issue | 22 |
container_start_page | 7797 |
container_title | Energies (Basel) |
container_volume | 14 |
creator | Fan, Wei Luo, Xi Yu, Jiabei Dai, Yiyang |
description | It is important to effectively reduce carbon emissions and ensure the simultaneous adjustment of economic development and environmental protection. Therefore, we used Kaya identity to screen the factors influencing carbon emissions and conducted preliminary qualitative analyses, including grey relation analysis and linear regression analysis, on important variables to establish a vector autoregression (VAR) model based on their annual data to empirically analyze the influencing factors of carbon emissions. The results showed that economic growth effect, energy intensity effect and embodied carbon in foreign trade were the key factors affecting carbon emissions, among which the economic growth effect contributed the most. Accordingly, we propose countermeasures including technological innovation to reduce energy intensity, the development of new energy sources to improve energy structure, acceleration of industrial structure transfer, and optimization of trade structure. |
doi_str_mv | 10.3390/en14227797 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ef0acde26a2840adafe9bc59fde58406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ef0acde26a2840adafe9bc59fde58406</doaj_id><sourcerecordid>2602041559</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-a7641a9227d83f7bd4a503fea0ecb7ecaa41318e4379fb514ee8e75dea1cf0293</originalsourceid><addsrcrecordid>eNpNUU1PwzAMrRBITGMXfkEkbkiDpGmb5jimDSYNceDjhiI3cUanbSlJe9i_J6UI8MG2nu33nuQkuWT0hnNJb_HAsjQVQoqTZMSkLKaMCn76rz9PJiFsaQzOGed8lLzPDmSxb2pfa9iR57YzR-IsmYOvXD-pQ6hjs9o3oFuyjMn5QO4goCERbz-QvGEPklkXM248DhePzuDuIjmzsAs4-anj5HW5eJk_TNdP96v5bD3VvGDtFESRMZDRuym5FZXJIKfcIlDUlUANkDHOSsy4kLbKWYZYosgNAtOWppKPk9XAaxxsVePrPfijclCrb8D5jQLf1nqHCi0FbTAtIC0zCgYsykrn0hrMI1BErquBq_Hus8PQqq3r_CHaV2lBU5qxPO8Vr4ct7V0IHu2vKqOq_4b6-wb_Ai-mfLk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2602041559</pqid></control><display><type>article</type><title>An Empirical Study of Carbon Emission Impact Factors Based on the Vector Autoregression Model</title><source>Publicly Available Content Database</source><creator>Fan, Wei ; Luo, Xi ; Yu, Jiabei ; Dai, Yiyang</creator><creatorcontrib>Fan, Wei ; Luo, Xi ; Yu, Jiabei ; Dai, Yiyang</creatorcontrib><description>It is important to effectively reduce carbon emissions and ensure the simultaneous adjustment of economic development and environmental protection. Therefore, we used Kaya identity to screen the factors influencing carbon emissions and conducted preliminary qualitative analyses, including grey relation analysis and linear regression analysis, on important variables to establish a vector autoregression (VAR) model based on their annual data to empirically analyze the influencing factors of carbon emissions. The results showed that economic growth effect, energy intensity effect and embodied carbon in foreign trade were the key factors affecting carbon emissions, among which the economic growth effect contributed the most. Accordingly, we propose countermeasures including technological innovation to reduce energy intensity, the development of new energy sources to improve energy structure, acceleration of industrial structure transfer, and optimization of trade structure.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en14227797</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Carbon dioxide ; carbon emissions ; Clean technology ; Coal ; Decomposition ; economic ; Economic development ; Economic growth ; Economics ; Emission analysis ; Emissions ; Emissions trading ; Energy ; Energy consumption ; Energy sources ; Energy utilization ; Environmental protection ; foreign trade ; GDP ; Greenhouse effect ; Greenhouse gases ; Gross Domestic Product ; Impact factors ; International trade ; Methods ; Optimization ; Qualitative analysis ; Quantitative analysis ; Regression analysis ; Technological change ; Trends ; VAR model</subject><ispartof>Energies (Basel), 2021-11, Vol.14 (22), p.7797</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-a7641a9227d83f7bd4a503fea0ecb7ecaa41318e4379fb514ee8e75dea1cf0293</citedby><cites>FETCH-LOGICAL-c361t-a7641a9227d83f7bd4a503fea0ecb7ecaa41318e4379fb514ee8e75dea1cf0293</cites><orcidid>0000-0001-6000-9160</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2602041559/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2602041559?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Fan, Wei</creatorcontrib><creatorcontrib>Luo, Xi</creatorcontrib><creatorcontrib>Yu, Jiabei</creatorcontrib><creatorcontrib>Dai, Yiyang</creatorcontrib><title>An Empirical Study of Carbon Emission Impact Factors Based on the Vector Autoregression Model</title><title>Energies (Basel)</title><description>It is important to effectively reduce carbon emissions and ensure the simultaneous adjustment of economic development and environmental protection. Therefore, we used Kaya identity to screen the factors influencing carbon emissions and conducted preliminary qualitative analyses, including grey relation analysis and linear regression analysis, on important variables to establish a vector autoregression (VAR) model based on their annual data to empirically analyze the influencing factors of carbon emissions. The results showed that economic growth effect, energy intensity effect and embodied carbon in foreign trade were the key factors affecting carbon emissions, among which the economic growth effect contributed the most. Accordingly, we propose countermeasures including technological innovation to reduce energy intensity, the development of new energy sources to improve energy structure, acceleration of industrial structure transfer, and optimization of trade structure.</description><subject>Carbon dioxide</subject><subject>carbon emissions</subject><subject>Clean technology</subject><subject>Coal</subject><subject>Decomposition</subject><subject>economic</subject><subject>Economic development</subject><subject>Economic growth</subject><subject>Economics</subject><subject>Emission analysis</subject><subject>Emissions</subject><subject>Emissions trading</subject><subject>Energy</subject><subject>Energy consumption</subject><subject>Energy sources</subject><subject>Energy utilization</subject><subject>Environmental protection</subject><subject>foreign trade</subject><subject>GDP</subject><subject>Greenhouse effect</subject><subject>Greenhouse gases</subject><subject>Gross Domestic Product</subject><subject>Impact factors</subject><subject>International trade</subject><subject>Methods</subject><subject>Optimization</subject><subject>Qualitative analysis</subject><subject>Quantitative analysis</subject><subject>Regression analysis</subject><subject>Technological change</subject><subject>Trends</subject><subject>VAR model</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1PwzAMrRBITGMXfkEkbkiDpGmb5jimDSYNceDjhiI3cUanbSlJe9i_J6UI8MG2nu33nuQkuWT0hnNJb_HAsjQVQoqTZMSkLKaMCn76rz9PJiFsaQzOGed8lLzPDmSxb2pfa9iR57YzR-IsmYOvXD-pQ6hjs9o3oFuyjMn5QO4goCERbz-QvGEPklkXM248DhePzuDuIjmzsAs4-anj5HW5eJk_TNdP96v5bD3VvGDtFESRMZDRuym5FZXJIKfcIlDUlUANkDHOSsy4kLbKWYZYosgNAtOWppKPk9XAaxxsVePrPfijclCrb8D5jQLf1nqHCi0FbTAtIC0zCgYsykrn0hrMI1BErquBq_Hus8PQqq3r_CHaV2lBU5qxPO8Vr4ct7V0IHu2vKqOq_4b6-wb_Ai-mfLk</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Fan, Wei</creator><creator>Luo, Xi</creator><creator>Yu, Jiabei</creator><creator>Dai, Yiyang</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6000-9160</orcidid></search><sort><creationdate>20211101</creationdate><title>An Empirical Study of Carbon Emission Impact Factors Based on the Vector Autoregression Model</title><author>Fan, Wei ; Luo, Xi ; Yu, Jiabei ; Dai, Yiyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-a7641a9227d83f7bd4a503fea0ecb7ecaa41318e4379fb514ee8e75dea1cf0293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbon dioxide</topic><topic>carbon emissions</topic><topic>Clean technology</topic><topic>Coal</topic><topic>Decomposition</topic><topic>economic</topic><topic>Economic development</topic><topic>Economic growth</topic><topic>Economics</topic><topic>Emission analysis</topic><topic>Emissions</topic><topic>Emissions trading</topic><topic>Energy</topic><topic>Energy consumption</topic><topic>Energy sources</topic><topic>Energy utilization</topic><topic>Environmental protection</topic><topic>foreign trade</topic><topic>GDP</topic><topic>Greenhouse effect</topic><topic>Greenhouse gases</topic><topic>Gross Domestic Product</topic><topic>Impact factors</topic><topic>International trade</topic><topic>Methods</topic><topic>Optimization</topic><topic>Qualitative analysis</topic><topic>Quantitative analysis</topic><topic>Regression analysis</topic><topic>Technological change</topic><topic>Trends</topic><topic>VAR model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Wei</creatorcontrib><creatorcontrib>Luo, Xi</creatorcontrib><creatorcontrib>Yu, Jiabei</creatorcontrib><creatorcontrib>Dai, Yiyang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Wei</au><au>Luo, Xi</au><au>Yu, Jiabei</au><au>Dai, Yiyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Empirical Study of Carbon Emission Impact Factors Based on the Vector Autoregression Model</atitle><jtitle>Energies (Basel)</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>14</volume><issue>22</issue><spage>7797</spage><pages>7797-</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>It is important to effectively reduce carbon emissions and ensure the simultaneous adjustment of economic development and environmental protection. Therefore, we used Kaya identity to screen the factors influencing carbon emissions and conducted preliminary qualitative analyses, including grey relation analysis and linear regression analysis, on important variables to establish a vector autoregression (VAR) model based on their annual data to empirically analyze the influencing factors of carbon emissions. The results showed that economic growth effect, energy intensity effect and embodied carbon in foreign trade were the key factors affecting carbon emissions, among which the economic growth effect contributed the most. Accordingly, we propose countermeasures including technological innovation to reduce energy intensity, the development of new energy sources to improve energy structure, acceleration of industrial structure transfer, and optimization of trade structure.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en14227797</doi><orcidid>https://orcid.org/0000-0001-6000-9160</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1073 |
ispartof | Energies (Basel), 2021-11, Vol.14 (22), p.7797 |
issn | 1996-1073 1996-1073 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ef0acde26a2840adafe9bc59fde58406 |
source | Publicly Available Content Database |
subjects | Carbon dioxide carbon emissions Clean technology Coal Decomposition economic Economic development Economic growth Economics Emission analysis Emissions Emissions trading Energy Energy consumption Energy sources Energy utilization Environmental protection foreign trade GDP Greenhouse effect Greenhouse gases Gross Domestic Product Impact factors International trade Methods Optimization Qualitative analysis Quantitative analysis Regression analysis Technological change Trends VAR model |
title | An Empirical Study of Carbon Emission Impact Factors Based on the Vector Autoregression Model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A47%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Empirical%20Study%20of%20Carbon%20Emission%20Impact%20Factors%20Based%20on%20the%20Vector%20Autoregression%20Model&rft.jtitle=Energies%20(Basel)&rft.au=Fan,%20Wei&rft.date=2021-11-01&rft.volume=14&rft.issue=22&rft.spage=7797&rft.pages=7797-&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en14227797&rft_dat=%3Cproquest_doaj_%3E2602041559%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-a7641a9227d83f7bd4a503fea0ecb7ecaa41318e4379fb514ee8e75dea1cf0293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2602041559&rft_id=info:pmid/&rfr_iscdi=true |