Loading…

An Empirical Study of Carbon Emission Impact Factors Based on the Vector Autoregression Model

It is important to effectively reduce carbon emissions and ensure the simultaneous adjustment of economic development and environmental protection. Therefore, we used Kaya identity to screen the factors influencing carbon emissions and conducted preliminary qualitative analyses, including grey relat...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2021-11, Vol.14 (22), p.7797
Main Authors: Fan, Wei, Luo, Xi, Yu, Jiabei, Dai, Yiyang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c361t-a7641a9227d83f7bd4a503fea0ecb7ecaa41318e4379fb514ee8e75dea1cf0293
cites cdi_FETCH-LOGICAL-c361t-a7641a9227d83f7bd4a503fea0ecb7ecaa41318e4379fb514ee8e75dea1cf0293
container_end_page
container_issue 22
container_start_page 7797
container_title Energies (Basel)
container_volume 14
creator Fan, Wei
Luo, Xi
Yu, Jiabei
Dai, Yiyang
description It is important to effectively reduce carbon emissions and ensure the simultaneous adjustment of economic development and environmental protection. Therefore, we used Kaya identity to screen the factors influencing carbon emissions and conducted preliminary qualitative analyses, including grey relation analysis and linear regression analysis, on important variables to establish a vector autoregression (VAR) model based on their annual data to empirically analyze the influencing factors of carbon emissions. The results showed that economic growth effect, energy intensity effect and embodied carbon in foreign trade were the key factors affecting carbon emissions, among which the economic growth effect contributed the most. Accordingly, we propose countermeasures including technological innovation to reduce energy intensity, the development of new energy sources to improve energy structure, acceleration of industrial structure transfer, and optimization of trade structure.
doi_str_mv 10.3390/en14227797
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ef0acde26a2840adafe9bc59fde58406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ef0acde26a2840adafe9bc59fde58406</doaj_id><sourcerecordid>2602041559</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-a7641a9227d83f7bd4a503fea0ecb7ecaa41318e4379fb514ee8e75dea1cf0293</originalsourceid><addsrcrecordid>eNpNUU1PwzAMrRBITGMXfkEkbkiDpGmb5jimDSYNceDjhiI3cUanbSlJe9i_J6UI8MG2nu33nuQkuWT0hnNJb_HAsjQVQoqTZMSkLKaMCn76rz9PJiFsaQzOGed8lLzPDmSxb2pfa9iR57YzR-IsmYOvXD-pQ6hjs9o3oFuyjMn5QO4goCERbz-QvGEPklkXM248DhePzuDuIjmzsAs4-anj5HW5eJk_TNdP96v5bD3VvGDtFESRMZDRuym5FZXJIKfcIlDUlUANkDHOSsy4kLbKWYZYosgNAtOWppKPk9XAaxxsVePrPfijclCrb8D5jQLf1nqHCi0FbTAtIC0zCgYsykrn0hrMI1BErquBq_Hus8PQqq3r_CHaV2lBU5qxPO8Vr4ct7V0IHu2vKqOq_4b6-wb_Ai-mfLk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2602041559</pqid></control><display><type>article</type><title>An Empirical Study of Carbon Emission Impact Factors Based on the Vector Autoregression Model</title><source>Publicly Available Content Database</source><creator>Fan, Wei ; Luo, Xi ; Yu, Jiabei ; Dai, Yiyang</creator><creatorcontrib>Fan, Wei ; Luo, Xi ; Yu, Jiabei ; Dai, Yiyang</creatorcontrib><description>It is important to effectively reduce carbon emissions and ensure the simultaneous adjustment of economic development and environmental protection. Therefore, we used Kaya identity to screen the factors influencing carbon emissions and conducted preliminary qualitative analyses, including grey relation analysis and linear regression analysis, on important variables to establish a vector autoregression (VAR) model based on their annual data to empirically analyze the influencing factors of carbon emissions. The results showed that economic growth effect, energy intensity effect and embodied carbon in foreign trade were the key factors affecting carbon emissions, among which the economic growth effect contributed the most. Accordingly, we propose countermeasures including technological innovation to reduce energy intensity, the development of new energy sources to improve energy structure, acceleration of industrial structure transfer, and optimization of trade structure.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en14227797</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Carbon dioxide ; carbon emissions ; Clean technology ; Coal ; Decomposition ; economic ; Economic development ; Economic growth ; Economics ; Emission analysis ; Emissions ; Emissions trading ; Energy ; Energy consumption ; Energy sources ; Energy utilization ; Environmental protection ; foreign trade ; GDP ; Greenhouse effect ; Greenhouse gases ; Gross Domestic Product ; Impact factors ; International trade ; Methods ; Optimization ; Qualitative analysis ; Quantitative analysis ; Regression analysis ; Technological change ; Trends ; VAR model</subject><ispartof>Energies (Basel), 2021-11, Vol.14 (22), p.7797</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-a7641a9227d83f7bd4a503fea0ecb7ecaa41318e4379fb514ee8e75dea1cf0293</citedby><cites>FETCH-LOGICAL-c361t-a7641a9227d83f7bd4a503fea0ecb7ecaa41318e4379fb514ee8e75dea1cf0293</cites><orcidid>0000-0001-6000-9160</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2602041559/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2602041559?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Fan, Wei</creatorcontrib><creatorcontrib>Luo, Xi</creatorcontrib><creatorcontrib>Yu, Jiabei</creatorcontrib><creatorcontrib>Dai, Yiyang</creatorcontrib><title>An Empirical Study of Carbon Emission Impact Factors Based on the Vector Autoregression Model</title><title>Energies (Basel)</title><description>It is important to effectively reduce carbon emissions and ensure the simultaneous adjustment of economic development and environmental protection. Therefore, we used Kaya identity to screen the factors influencing carbon emissions and conducted preliminary qualitative analyses, including grey relation analysis and linear regression analysis, on important variables to establish a vector autoregression (VAR) model based on their annual data to empirically analyze the influencing factors of carbon emissions. The results showed that economic growth effect, energy intensity effect and embodied carbon in foreign trade were the key factors affecting carbon emissions, among which the economic growth effect contributed the most. Accordingly, we propose countermeasures including technological innovation to reduce energy intensity, the development of new energy sources to improve energy structure, acceleration of industrial structure transfer, and optimization of trade structure.</description><subject>Carbon dioxide</subject><subject>carbon emissions</subject><subject>Clean technology</subject><subject>Coal</subject><subject>Decomposition</subject><subject>economic</subject><subject>Economic development</subject><subject>Economic growth</subject><subject>Economics</subject><subject>Emission analysis</subject><subject>Emissions</subject><subject>Emissions trading</subject><subject>Energy</subject><subject>Energy consumption</subject><subject>Energy sources</subject><subject>Energy utilization</subject><subject>Environmental protection</subject><subject>foreign trade</subject><subject>GDP</subject><subject>Greenhouse effect</subject><subject>Greenhouse gases</subject><subject>Gross Domestic Product</subject><subject>Impact factors</subject><subject>International trade</subject><subject>Methods</subject><subject>Optimization</subject><subject>Qualitative analysis</subject><subject>Quantitative analysis</subject><subject>Regression analysis</subject><subject>Technological change</subject><subject>Trends</subject><subject>VAR model</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1PwzAMrRBITGMXfkEkbkiDpGmb5jimDSYNceDjhiI3cUanbSlJe9i_J6UI8MG2nu33nuQkuWT0hnNJb_HAsjQVQoqTZMSkLKaMCn76rz9PJiFsaQzOGed8lLzPDmSxb2pfa9iR57YzR-IsmYOvXD-pQ6hjs9o3oFuyjMn5QO4goCERbz-QvGEPklkXM248DhePzuDuIjmzsAs4-anj5HW5eJk_TNdP96v5bD3VvGDtFESRMZDRuym5FZXJIKfcIlDUlUANkDHOSsy4kLbKWYZYosgNAtOWppKPk9XAaxxsVePrPfijclCrb8D5jQLf1nqHCi0FbTAtIC0zCgYsykrn0hrMI1BErquBq_Hus8PQqq3r_CHaV2lBU5qxPO8Vr4ct7V0IHu2vKqOq_4b6-wb_Ai-mfLk</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Fan, Wei</creator><creator>Luo, Xi</creator><creator>Yu, Jiabei</creator><creator>Dai, Yiyang</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6000-9160</orcidid></search><sort><creationdate>20211101</creationdate><title>An Empirical Study of Carbon Emission Impact Factors Based on the Vector Autoregression Model</title><author>Fan, Wei ; Luo, Xi ; Yu, Jiabei ; Dai, Yiyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-a7641a9227d83f7bd4a503fea0ecb7ecaa41318e4379fb514ee8e75dea1cf0293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbon dioxide</topic><topic>carbon emissions</topic><topic>Clean technology</topic><topic>Coal</topic><topic>Decomposition</topic><topic>economic</topic><topic>Economic development</topic><topic>Economic growth</topic><topic>Economics</topic><topic>Emission analysis</topic><topic>Emissions</topic><topic>Emissions trading</topic><topic>Energy</topic><topic>Energy consumption</topic><topic>Energy sources</topic><topic>Energy utilization</topic><topic>Environmental protection</topic><topic>foreign trade</topic><topic>GDP</topic><topic>Greenhouse effect</topic><topic>Greenhouse gases</topic><topic>Gross Domestic Product</topic><topic>Impact factors</topic><topic>International trade</topic><topic>Methods</topic><topic>Optimization</topic><topic>Qualitative analysis</topic><topic>Quantitative analysis</topic><topic>Regression analysis</topic><topic>Technological change</topic><topic>Trends</topic><topic>VAR model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Wei</creatorcontrib><creatorcontrib>Luo, Xi</creatorcontrib><creatorcontrib>Yu, Jiabei</creatorcontrib><creatorcontrib>Dai, Yiyang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Wei</au><au>Luo, Xi</au><au>Yu, Jiabei</au><au>Dai, Yiyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Empirical Study of Carbon Emission Impact Factors Based on the Vector Autoregression Model</atitle><jtitle>Energies (Basel)</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>14</volume><issue>22</issue><spage>7797</spage><pages>7797-</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>It is important to effectively reduce carbon emissions and ensure the simultaneous adjustment of economic development and environmental protection. Therefore, we used Kaya identity to screen the factors influencing carbon emissions and conducted preliminary qualitative analyses, including grey relation analysis and linear regression analysis, on important variables to establish a vector autoregression (VAR) model based on their annual data to empirically analyze the influencing factors of carbon emissions. The results showed that economic growth effect, energy intensity effect and embodied carbon in foreign trade were the key factors affecting carbon emissions, among which the economic growth effect contributed the most. Accordingly, we propose countermeasures including technological innovation to reduce energy intensity, the development of new energy sources to improve energy structure, acceleration of industrial structure transfer, and optimization of trade structure.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en14227797</doi><orcidid>https://orcid.org/0000-0001-6000-9160</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1073
ispartof Energies (Basel), 2021-11, Vol.14 (22), p.7797
issn 1996-1073
1996-1073
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ef0acde26a2840adafe9bc59fde58406
source Publicly Available Content Database
subjects Carbon dioxide
carbon emissions
Clean technology
Coal
Decomposition
economic
Economic development
Economic growth
Economics
Emission analysis
Emissions
Emissions trading
Energy
Energy consumption
Energy sources
Energy utilization
Environmental protection
foreign trade
GDP
Greenhouse effect
Greenhouse gases
Gross Domestic Product
Impact factors
International trade
Methods
Optimization
Qualitative analysis
Quantitative analysis
Regression analysis
Technological change
Trends
VAR model
title An Empirical Study of Carbon Emission Impact Factors Based on the Vector Autoregression Model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A47%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Empirical%20Study%20of%20Carbon%20Emission%20Impact%20Factors%20Based%20on%20the%20Vector%20Autoregression%20Model&rft.jtitle=Energies%20(Basel)&rft.au=Fan,%20Wei&rft.date=2021-11-01&rft.volume=14&rft.issue=22&rft.spage=7797&rft.pages=7797-&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en14227797&rft_dat=%3Cproquest_doaj_%3E2602041559%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-a7641a9227d83f7bd4a503fea0ecb7ecaa41318e4379fb514ee8e75dea1cf0293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2602041559&rft_id=info:pmid/&rfr_iscdi=true