Loading…
Production and Characterization of Maximum Liquid Oil Products through Individual and Copyrolysis of Pressed Neem Oil Cake and Waste Thermocol Mixture
In this study, individual and copyrolysis experiments were performed with pressed neem oil cake (NOC) and waste thermocol (WT) to produce high grade liquid oil. The effects of reactor temperature, heating rate, feed ratio, and reaction time on product yields were investigated to identify the optimum...
Saved in:
Published in: | Advances in polymer technology 2022-05, Vol.2022, p.1-11 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, individual and copyrolysis experiments were performed with pressed neem oil cake (NOC) and waste thermocol (WT) to produce high grade liquid oil. The effects of reactor temperature, heating rate, feed ratio, and reaction time on product yields were investigated to identify the optimum parameters for maximum oil yield. The maximum oil yield of 49.3 wt%, 73.4 wt% and 88.5 wt% was obtained from NOC pyrolysis, copyrolysis, and WT pyrolysis under optimized conditions. During copyrolysis, the maximum oil product was obtained under NOC/WT ratio of 1 : 2 and at the temperature of 550°C. The liquid oils obtained from thermal and copyrolysis were subjected to detailed physicochemical analysis. When compared to biomass pyrolysis, the copyrolysis of WT and NOC had a substantial improvement in oil properties. The copyrolysis oil shows higher heating value of 40.3 MJ/kg with reduced water content. In addition to that, the copyrolysis oil obtained under optimized conditions is analyzed with Fourier transform infrared spectroscopy (FT-IR) and Gas chromatography–mass spectrometry (GC-MS) analysis to determine the chemical characterization. The analysis showed the presence of aliphatic and aromatic hydrocarbons in the oil. |
---|---|
ISSN: | 0730-6679 1098-2329 |
DOI: | 10.1155/2022/5258130 |