Loading…

Application of Artificial Neural Network Sensitivity Analysis to Identify Key Determinants of Harvesting Date and Yield of Soybean (Glycine max [L.] Merrill) Cultivar Augusta

Genotype and weather conditions play crucial roles in determining the volume and stability of a soybean yield. The aim of this study was to identify the key meteorological factors affecting the harvest date (model M_HARV) and yield of the soybean variety Augusta (model M_YIELD) using a neural networ...

Full description

Saved in:
Bibliographic Details
Published in:Agriculture (Basel) 2022-06, Vol.12 (6), p.754
Main Authors: Niedbała, Gniewko, Kurasiak-Popowska, Danuta, Piekutowska, Magdalena, Wojciechowski, Tomasz, Kwiatek, Michał, Nawracała, Jerzy
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c318t-84470f195230d91d41e8bc513607d146ae873ff7ac9adfd7ca83b57e9dfc5ab23
cites cdi_FETCH-LOGICAL-c318t-84470f195230d91d41e8bc513607d146ae873ff7ac9adfd7ca83b57e9dfc5ab23
container_end_page
container_issue 6
container_start_page 754
container_title Agriculture (Basel)
container_volume 12
creator Niedbała, Gniewko
Kurasiak-Popowska, Danuta
Piekutowska, Magdalena
Wojciechowski, Tomasz
Kwiatek, Michał
Nawracała, Jerzy
description Genotype and weather conditions play crucial roles in determining the volume and stability of a soybean yield. The aim of this study was to identify the key meteorological factors affecting the harvest date (model M_HARV) and yield of the soybean variety Augusta (model M_YIELD) using a neural network sensitivity analysis. The dates of the start of flowering and maturity, the yield data, the average daily temperatures and precipitation were collected, and the Selyaninov hydrothermal coefficients were calculated during a fifteen-year study (2005–2020 growing seasons). During the experiment, highly variable weather conditions occurred, strongly modifying the course of phenological phases in soybean and the achieved seed yield of Augusta cultivar. The harvesting of mature soybean seeds took place between 131 and 156 days after sowing, while the harvested yield ranged from 0.6 t·ha−1 to 2.6 t·ha−1. The sensitivity analysis of the MLP neural network made it possible to identify the factors which had the greatest impact on the tested dependent variables among all the analyzed factors. It was revealed that the variables assigned ranks 1 and 2 in the sensitivity analysis of the neural network forming the M_HARV model were total rainfall in the first decade of June and the first decade of August. The variables with the highest impact on the Augusta soybean seed yield (model M_YIELD) were the mean daily air temperature in the second decade of May and the Seljaninov coefficient values calculated for the sowing–flowering date period.
doi_str_mv 10.3390/agriculture12060754
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ef1d8ab11d6a4e86b0edcee28519fd1b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ef1d8ab11d6a4e86b0edcee28519fd1b</doaj_id><sourcerecordid>2679616709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-84470f195230d91d41e8bc513607d146ae873ff7ac9adfd7ca83b57e9dfc5ab23</originalsourceid><addsrcrecordid>eNptUcFu1DAQjRBIVKVfwMUSFzhsseMkTo7RlrarLnAoHBBC1sQer7x47cV2FvJTfGOzXYQ4MJc3mnnzRvOmKF4yesl5R9_CJlo1ujxGZCVtqKirJ8VZSYVY0EqUT__JnxcXKW3pHB3jLW3Oit_9fu-sgmyDJ8GQPmZrrLLgyAcc4yPknyF-J_fok832YPNEeg9uSjaRHMhKo59nJnKHE7nCjHFnPficjnK3EA-YsvUbcgUZCXhNvlh0-ti8D9OA4MnrGzcp65Hs4Bf5ur78Rt5jjNa5N2Q532UPEEk_bsaU4UXxzIBLePEHz4vP1-8-LW8X6483q2W_XijO2rxoq0pQw7q65FR3TFcM20HVjM_uaFY1gK3gxghQHWijhYKWD7XAThtVw1Dy82J10tUBtnIf7Q7iJANY-VgIcSNhdko5lGiYbmFgTDdQYdsMFLVCLNuadUazYdZ6ddLax_BjnN2Q2zDG2cEky0Z0DWsE7WYWP7FUDClFNH-3MiqPf5b_-TN_AFmgoe8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2679616709</pqid></control><display><type>article</type><title>Application of Artificial Neural Network Sensitivity Analysis to Identify Key Determinants of Harvesting Date and Yield of Soybean (Glycine max [L.] Merrill) Cultivar Augusta</title><source>Publicly Available Content Database</source><creator>Niedbała, Gniewko ; Kurasiak-Popowska, Danuta ; Piekutowska, Magdalena ; Wojciechowski, Tomasz ; Kwiatek, Michał ; Nawracała, Jerzy</creator><creatorcontrib>Niedbała, Gniewko ; Kurasiak-Popowska, Danuta ; Piekutowska, Magdalena ; Wojciechowski, Tomasz ; Kwiatek, Michał ; Nawracała, Jerzy</creatorcontrib><description>Genotype and weather conditions play crucial roles in determining the volume and stability of a soybean yield. The aim of this study was to identify the key meteorological factors affecting the harvest date (model M_HARV) and yield of the soybean variety Augusta (model M_YIELD) using a neural network sensitivity analysis. The dates of the start of flowering and maturity, the yield data, the average daily temperatures and precipitation were collected, and the Selyaninov hydrothermal coefficients were calculated during a fifteen-year study (2005–2020 growing seasons). During the experiment, highly variable weather conditions occurred, strongly modifying the course of phenological phases in soybean and the achieved seed yield of Augusta cultivar. The harvesting of mature soybean seeds took place between 131 and 156 days after sowing, while the harvested yield ranged from 0.6 t·ha−1 to 2.6 t·ha−1. The sensitivity analysis of the MLP neural network made it possible to identify the factors which had the greatest impact on the tested dependent variables among all the analyzed factors. It was revealed that the variables assigned ranks 1 and 2 in the sensitivity analysis of the neural network forming the M_HARV model were total rainfall in the first decade of June and the first decade of August. The variables with the highest impact on the Augusta soybean seed yield (model M_YIELD) were the mean daily air temperature in the second decade of May and the Seljaninov coefficient values calculated for the sowing–flowering date period.</description><identifier>ISSN: 2077-0472</identifier><identifier>EISSN: 2077-0472</identifier><identifier>DOI: 10.3390/agriculture12060754</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adaptation ; Agricultural production ; Air temperature ; artificial neural network ; Artificial neural networks ; Crop yield ; Cultivars ; Dependent variables ; Flowering ; Genotype &amp; phenotype ; Genotypes ; Glycine max ; Growing season ; Harvest ; Life sciences ; Neural networks ; Planting ; Precipitation ; Rain ; Rainfall ; Seeds ; Sensitivity analysis ; soybean ; Soybeans ; vegetation period ; Weather ; weather conditions ; yield</subject><ispartof>Agriculture (Basel), 2022-06, Vol.12 (6), p.754</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-84470f195230d91d41e8bc513607d146ae873ff7ac9adfd7ca83b57e9dfc5ab23</citedby><cites>FETCH-LOGICAL-c318t-84470f195230d91d41e8bc513607d146ae873ff7ac9adfd7ca83b57e9dfc5ab23</cites><orcidid>0000-0002-2214-406X ; 0000-0001-9442-3124 ; 0000-0002-5301-4719 ; 0000-0003-3721-6473 ; 0000-0002-2222-6866</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2679616709/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2679616709?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Niedbała, Gniewko</creatorcontrib><creatorcontrib>Kurasiak-Popowska, Danuta</creatorcontrib><creatorcontrib>Piekutowska, Magdalena</creatorcontrib><creatorcontrib>Wojciechowski, Tomasz</creatorcontrib><creatorcontrib>Kwiatek, Michał</creatorcontrib><creatorcontrib>Nawracała, Jerzy</creatorcontrib><title>Application of Artificial Neural Network Sensitivity Analysis to Identify Key Determinants of Harvesting Date and Yield of Soybean (Glycine max [L.] Merrill) Cultivar Augusta</title><title>Agriculture (Basel)</title><description>Genotype and weather conditions play crucial roles in determining the volume and stability of a soybean yield. The aim of this study was to identify the key meteorological factors affecting the harvest date (model M_HARV) and yield of the soybean variety Augusta (model M_YIELD) using a neural network sensitivity analysis. The dates of the start of flowering and maturity, the yield data, the average daily temperatures and precipitation were collected, and the Selyaninov hydrothermal coefficients were calculated during a fifteen-year study (2005–2020 growing seasons). During the experiment, highly variable weather conditions occurred, strongly modifying the course of phenological phases in soybean and the achieved seed yield of Augusta cultivar. The harvesting of mature soybean seeds took place between 131 and 156 days after sowing, while the harvested yield ranged from 0.6 t·ha−1 to 2.6 t·ha−1. The sensitivity analysis of the MLP neural network made it possible to identify the factors which had the greatest impact on the tested dependent variables among all the analyzed factors. It was revealed that the variables assigned ranks 1 and 2 in the sensitivity analysis of the neural network forming the M_HARV model were total rainfall in the first decade of June and the first decade of August. The variables with the highest impact on the Augusta soybean seed yield (model M_YIELD) were the mean daily air temperature in the second decade of May and the Seljaninov coefficient values calculated for the sowing–flowering date period.</description><subject>Adaptation</subject><subject>Agricultural production</subject><subject>Air temperature</subject><subject>artificial neural network</subject><subject>Artificial neural networks</subject><subject>Crop yield</subject><subject>Cultivars</subject><subject>Dependent variables</subject><subject>Flowering</subject><subject>Genotype &amp; phenotype</subject><subject>Genotypes</subject><subject>Glycine max</subject><subject>Growing season</subject><subject>Harvest</subject><subject>Life sciences</subject><subject>Neural networks</subject><subject>Planting</subject><subject>Precipitation</subject><subject>Rain</subject><subject>Rainfall</subject><subject>Seeds</subject><subject>Sensitivity analysis</subject><subject>soybean</subject><subject>Soybeans</subject><subject>vegetation period</subject><subject>Weather</subject><subject>weather conditions</subject><subject>yield</subject><issn>2077-0472</issn><issn>2077-0472</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUcFu1DAQjRBIVKVfwMUSFzhsseMkTo7RlrarLnAoHBBC1sQer7x47cV2FvJTfGOzXYQ4MJc3mnnzRvOmKF4yesl5R9_CJlo1ujxGZCVtqKirJ8VZSYVY0EqUT__JnxcXKW3pHB3jLW3Oit_9fu-sgmyDJ8GQPmZrrLLgyAcc4yPknyF-J_fok832YPNEeg9uSjaRHMhKo59nJnKHE7nCjHFnPficjnK3EA-YsvUbcgUZCXhNvlh0-ti8D9OA4MnrGzcp65Hs4Bf5ur78Rt5jjNa5N2Q532UPEEk_bsaU4UXxzIBLePEHz4vP1-8-LW8X6483q2W_XijO2rxoq0pQw7q65FR3TFcM20HVjM_uaFY1gK3gxghQHWijhYKWD7XAThtVw1Dy82J10tUBtnIf7Q7iJANY-VgIcSNhdko5lGiYbmFgTDdQYdsMFLVCLNuadUazYdZ6ddLax_BjnN2Q2zDG2cEky0Z0DWsE7WYWP7FUDClFNH-3MiqPf5b_-TN_AFmgoe8</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Niedbała, Gniewko</creator><creator>Kurasiak-Popowska, Danuta</creator><creator>Piekutowska, Magdalena</creator><creator>Wojciechowski, Tomasz</creator><creator>Kwiatek, Michał</creator><creator>Nawracała, Jerzy</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7X2</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>M0K</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>SOI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2214-406X</orcidid><orcidid>https://orcid.org/0000-0001-9442-3124</orcidid><orcidid>https://orcid.org/0000-0002-5301-4719</orcidid><orcidid>https://orcid.org/0000-0003-3721-6473</orcidid><orcidid>https://orcid.org/0000-0002-2222-6866</orcidid></search><sort><creationdate>20220601</creationdate><title>Application of Artificial Neural Network Sensitivity Analysis to Identify Key Determinants of Harvesting Date and Yield of Soybean (Glycine max [L.] Merrill) Cultivar Augusta</title><author>Niedbała, Gniewko ; Kurasiak-Popowska, Danuta ; Piekutowska, Magdalena ; Wojciechowski, Tomasz ; Kwiatek, Michał ; Nawracała, Jerzy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-84470f195230d91d41e8bc513607d146ae873ff7ac9adfd7ca83b57e9dfc5ab23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptation</topic><topic>Agricultural production</topic><topic>Air temperature</topic><topic>artificial neural network</topic><topic>Artificial neural networks</topic><topic>Crop yield</topic><topic>Cultivars</topic><topic>Dependent variables</topic><topic>Flowering</topic><topic>Genotype &amp; phenotype</topic><topic>Genotypes</topic><topic>Glycine max</topic><topic>Growing season</topic><topic>Harvest</topic><topic>Life sciences</topic><topic>Neural networks</topic><topic>Planting</topic><topic>Precipitation</topic><topic>Rain</topic><topic>Rainfall</topic><topic>Seeds</topic><topic>Sensitivity analysis</topic><topic>soybean</topic><topic>Soybeans</topic><topic>vegetation period</topic><topic>Weather</topic><topic>weather conditions</topic><topic>yield</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niedbała, Gniewko</creatorcontrib><creatorcontrib>Kurasiak-Popowska, Danuta</creatorcontrib><creatorcontrib>Piekutowska, Magdalena</creatorcontrib><creatorcontrib>Wojciechowski, Tomasz</creatorcontrib><creatorcontrib>Kwiatek, Michał</creatorcontrib><creatorcontrib>Nawracała, Jerzy</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Agricultural Science Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Agricultural Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environment Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Agriculture (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niedbała, Gniewko</au><au>Kurasiak-Popowska, Danuta</au><au>Piekutowska, Magdalena</au><au>Wojciechowski, Tomasz</au><au>Kwiatek, Michał</au><au>Nawracała, Jerzy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Artificial Neural Network Sensitivity Analysis to Identify Key Determinants of Harvesting Date and Yield of Soybean (Glycine max [L.] Merrill) Cultivar Augusta</atitle><jtitle>Agriculture (Basel)</jtitle><date>2022-06-01</date><risdate>2022</risdate><volume>12</volume><issue>6</issue><spage>754</spage><pages>754-</pages><issn>2077-0472</issn><eissn>2077-0472</eissn><abstract>Genotype and weather conditions play crucial roles in determining the volume and stability of a soybean yield. The aim of this study was to identify the key meteorological factors affecting the harvest date (model M_HARV) and yield of the soybean variety Augusta (model M_YIELD) using a neural network sensitivity analysis. The dates of the start of flowering and maturity, the yield data, the average daily temperatures and precipitation were collected, and the Selyaninov hydrothermal coefficients were calculated during a fifteen-year study (2005–2020 growing seasons). During the experiment, highly variable weather conditions occurred, strongly modifying the course of phenological phases in soybean and the achieved seed yield of Augusta cultivar. The harvesting of mature soybean seeds took place between 131 and 156 days after sowing, while the harvested yield ranged from 0.6 t·ha−1 to 2.6 t·ha−1. The sensitivity analysis of the MLP neural network made it possible to identify the factors which had the greatest impact on the tested dependent variables among all the analyzed factors. It was revealed that the variables assigned ranks 1 and 2 in the sensitivity analysis of the neural network forming the M_HARV model were total rainfall in the first decade of June and the first decade of August. The variables with the highest impact on the Augusta soybean seed yield (model M_YIELD) were the mean daily air temperature in the second decade of May and the Seljaninov coefficient values calculated for the sowing–flowering date period.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/agriculture12060754</doi><orcidid>https://orcid.org/0000-0002-2214-406X</orcidid><orcidid>https://orcid.org/0000-0001-9442-3124</orcidid><orcidid>https://orcid.org/0000-0002-5301-4719</orcidid><orcidid>https://orcid.org/0000-0003-3721-6473</orcidid><orcidid>https://orcid.org/0000-0002-2222-6866</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2077-0472
ispartof Agriculture (Basel), 2022-06, Vol.12 (6), p.754
issn 2077-0472
2077-0472
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ef1d8ab11d6a4e86b0edcee28519fd1b
source Publicly Available Content Database
subjects Adaptation
Agricultural production
Air temperature
artificial neural network
Artificial neural networks
Crop yield
Cultivars
Dependent variables
Flowering
Genotype & phenotype
Genotypes
Glycine max
Growing season
Harvest
Life sciences
Neural networks
Planting
Precipitation
Rain
Rainfall
Seeds
Sensitivity analysis
soybean
Soybeans
vegetation period
Weather
weather conditions
yield
title Application of Artificial Neural Network Sensitivity Analysis to Identify Key Determinants of Harvesting Date and Yield of Soybean (Glycine max [L.] Merrill) Cultivar Augusta
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A30%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Artificial%20Neural%20Network%20Sensitivity%20Analysis%20to%20Identify%20Key%20Determinants%20of%20Harvesting%20Date%20and%20Yield%20of%20Soybean%20(Glycine%20max%20%5BL.%5D%20Merrill)%20Cultivar%20Augusta&rft.jtitle=Agriculture%20(Basel)&rft.au=Niedba%C5%82a,%20Gniewko&rft.date=2022-06-01&rft.volume=12&rft.issue=6&rft.spage=754&rft.pages=754-&rft.issn=2077-0472&rft.eissn=2077-0472&rft_id=info:doi/10.3390/agriculture12060754&rft_dat=%3Cproquest_doaj_%3E2679616709%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c318t-84470f195230d91d41e8bc513607d146ae873ff7ac9adfd7ca83b57e9dfc5ab23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2679616709&rft_id=info:pmid/&rfr_iscdi=true