Loading…
Application of Artificial Neural Network Sensitivity Analysis to Identify Key Determinants of Harvesting Date and Yield of Soybean (Glycine max [L.] Merrill) Cultivar Augusta
Genotype and weather conditions play crucial roles in determining the volume and stability of a soybean yield. The aim of this study was to identify the key meteorological factors affecting the harvest date (model M_HARV) and yield of the soybean variety Augusta (model M_YIELD) using a neural networ...
Saved in:
Published in: | Agriculture (Basel) 2022-06, Vol.12 (6), p.754 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c318t-84470f195230d91d41e8bc513607d146ae873ff7ac9adfd7ca83b57e9dfc5ab23 |
---|---|
cites | cdi_FETCH-LOGICAL-c318t-84470f195230d91d41e8bc513607d146ae873ff7ac9adfd7ca83b57e9dfc5ab23 |
container_end_page | |
container_issue | 6 |
container_start_page | 754 |
container_title | Agriculture (Basel) |
container_volume | 12 |
creator | Niedbała, Gniewko Kurasiak-Popowska, Danuta Piekutowska, Magdalena Wojciechowski, Tomasz Kwiatek, Michał Nawracała, Jerzy |
description | Genotype and weather conditions play crucial roles in determining the volume and stability of a soybean yield. The aim of this study was to identify the key meteorological factors affecting the harvest date (model M_HARV) and yield of the soybean variety Augusta (model M_YIELD) using a neural network sensitivity analysis. The dates of the start of flowering and maturity, the yield data, the average daily temperatures and precipitation were collected, and the Selyaninov hydrothermal coefficients were calculated during a fifteen-year study (2005–2020 growing seasons). During the experiment, highly variable weather conditions occurred, strongly modifying the course of phenological phases in soybean and the achieved seed yield of Augusta cultivar. The harvesting of mature soybean seeds took place between 131 and 156 days after sowing, while the harvested yield ranged from 0.6 t·ha−1 to 2.6 t·ha−1. The sensitivity analysis of the MLP neural network made it possible to identify the factors which had the greatest impact on the tested dependent variables among all the analyzed factors. It was revealed that the variables assigned ranks 1 and 2 in the sensitivity analysis of the neural network forming the M_HARV model were total rainfall in the first decade of June and the first decade of August. The variables with the highest impact on the Augusta soybean seed yield (model M_YIELD) were the mean daily air temperature in the second decade of May and the Seljaninov coefficient values calculated for the sowing–flowering date period. |
doi_str_mv | 10.3390/agriculture12060754 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ef1d8ab11d6a4e86b0edcee28519fd1b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ef1d8ab11d6a4e86b0edcee28519fd1b</doaj_id><sourcerecordid>2679616709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-84470f195230d91d41e8bc513607d146ae873ff7ac9adfd7ca83b57e9dfc5ab23</originalsourceid><addsrcrecordid>eNptUcFu1DAQjRBIVKVfwMUSFzhsseMkTo7RlrarLnAoHBBC1sQer7x47cV2FvJTfGOzXYQ4MJc3mnnzRvOmKF4yesl5R9_CJlo1ujxGZCVtqKirJ8VZSYVY0EqUT__JnxcXKW3pHB3jLW3Oit_9fu-sgmyDJ8GQPmZrrLLgyAcc4yPknyF-J_fok832YPNEeg9uSjaRHMhKo59nJnKHE7nCjHFnPficjnK3EA-YsvUbcgUZCXhNvlh0-ti8D9OA4MnrGzcp65Hs4Bf5ur78Rt5jjNa5N2Q532UPEEk_bsaU4UXxzIBLePEHz4vP1-8-LW8X6483q2W_XijO2rxoq0pQw7q65FR3TFcM20HVjM_uaFY1gK3gxghQHWijhYKWD7XAThtVw1Dy82J10tUBtnIf7Q7iJANY-VgIcSNhdko5lGiYbmFgTDdQYdsMFLVCLNuadUazYdZ6ddLax_BjnN2Q2zDG2cEky0Z0DWsE7WYWP7FUDClFNH-3MiqPf5b_-TN_AFmgoe8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2679616709</pqid></control><display><type>article</type><title>Application of Artificial Neural Network Sensitivity Analysis to Identify Key Determinants of Harvesting Date and Yield of Soybean (Glycine max [L.] Merrill) Cultivar Augusta</title><source>Publicly Available Content Database</source><creator>Niedbała, Gniewko ; Kurasiak-Popowska, Danuta ; Piekutowska, Magdalena ; Wojciechowski, Tomasz ; Kwiatek, Michał ; Nawracała, Jerzy</creator><creatorcontrib>Niedbała, Gniewko ; Kurasiak-Popowska, Danuta ; Piekutowska, Magdalena ; Wojciechowski, Tomasz ; Kwiatek, Michał ; Nawracała, Jerzy</creatorcontrib><description>Genotype and weather conditions play crucial roles in determining the volume and stability of a soybean yield. The aim of this study was to identify the key meteorological factors affecting the harvest date (model M_HARV) and yield of the soybean variety Augusta (model M_YIELD) using a neural network sensitivity analysis. The dates of the start of flowering and maturity, the yield data, the average daily temperatures and precipitation were collected, and the Selyaninov hydrothermal coefficients were calculated during a fifteen-year study (2005–2020 growing seasons). During the experiment, highly variable weather conditions occurred, strongly modifying the course of phenological phases in soybean and the achieved seed yield of Augusta cultivar. The harvesting of mature soybean seeds took place between 131 and 156 days after sowing, while the harvested yield ranged from 0.6 t·ha−1 to 2.6 t·ha−1. The sensitivity analysis of the MLP neural network made it possible to identify the factors which had the greatest impact on the tested dependent variables among all the analyzed factors. It was revealed that the variables assigned ranks 1 and 2 in the sensitivity analysis of the neural network forming the M_HARV model were total rainfall in the first decade of June and the first decade of August. The variables with the highest impact on the Augusta soybean seed yield (model M_YIELD) were the mean daily air temperature in the second decade of May and the Seljaninov coefficient values calculated for the sowing–flowering date period.</description><identifier>ISSN: 2077-0472</identifier><identifier>EISSN: 2077-0472</identifier><identifier>DOI: 10.3390/agriculture12060754</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adaptation ; Agricultural production ; Air temperature ; artificial neural network ; Artificial neural networks ; Crop yield ; Cultivars ; Dependent variables ; Flowering ; Genotype & phenotype ; Genotypes ; Glycine max ; Growing season ; Harvest ; Life sciences ; Neural networks ; Planting ; Precipitation ; Rain ; Rainfall ; Seeds ; Sensitivity analysis ; soybean ; Soybeans ; vegetation period ; Weather ; weather conditions ; yield</subject><ispartof>Agriculture (Basel), 2022-06, Vol.12 (6), p.754</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-84470f195230d91d41e8bc513607d146ae873ff7ac9adfd7ca83b57e9dfc5ab23</citedby><cites>FETCH-LOGICAL-c318t-84470f195230d91d41e8bc513607d146ae873ff7ac9adfd7ca83b57e9dfc5ab23</cites><orcidid>0000-0002-2214-406X ; 0000-0001-9442-3124 ; 0000-0002-5301-4719 ; 0000-0003-3721-6473 ; 0000-0002-2222-6866</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2679616709/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2679616709?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Niedbała, Gniewko</creatorcontrib><creatorcontrib>Kurasiak-Popowska, Danuta</creatorcontrib><creatorcontrib>Piekutowska, Magdalena</creatorcontrib><creatorcontrib>Wojciechowski, Tomasz</creatorcontrib><creatorcontrib>Kwiatek, Michał</creatorcontrib><creatorcontrib>Nawracała, Jerzy</creatorcontrib><title>Application of Artificial Neural Network Sensitivity Analysis to Identify Key Determinants of Harvesting Date and Yield of Soybean (Glycine max [L.] Merrill) Cultivar Augusta</title><title>Agriculture (Basel)</title><description>Genotype and weather conditions play crucial roles in determining the volume and stability of a soybean yield. The aim of this study was to identify the key meteorological factors affecting the harvest date (model M_HARV) and yield of the soybean variety Augusta (model M_YIELD) using a neural network sensitivity analysis. The dates of the start of flowering and maturity, the yield data, the average daily temperatures and precipitation were collected, and the Selyaninov hydrothermal coefficients were calculated during a fifteen-year study (2005–2020 growing seasons). During the experiment, highly variable weather conditions occurred, strongly modifying the course of phenological phases in soybean and the achieved seed yield of Augusta cultivar. The harvesting of mature soybean seeds took place between 131 and 156 days after sowing, while the harvested yield ranged from 0.6 t·ha−1 to 2.6 t·ha−1. The sensitivity analysis of the MLP neural network made it possible to identify the factors which had the greatest impact on the tested dependent variables among all the analyzed factors. It was revealed that the variables assigned ranks 1 and 2 in the sensitivity analysis of the neural network forming the M_HARV model were total rainfall in the first decade of June and the first decade of August. The variables with the highest impact on the Augusta soybean seed yield (model M_YIELD) were the mean daily air temperature in the second decade of May and the Seljaninov coefficient values calculated for the sowing–flowering date period.</description><subject>Adaptation</subject><subject>Agricultural production</subject><subject>Air temperature</subject><subject>artificial neural network</subject><subject>Artificial neural networks</subject><subject>Crop yield</subject><subject>Cultivars</subject><subject>Dependent variables</subject><subject>Flowering</subject><subject>Genotype & phenotype</subject><subject>Genotypes</subject><subject>Glycine max</subject><subject>Growing season</subject><subject>Harvest</subject><subject>Life sciences</subject><subject>Neural networks</subject><subject>Planting</subject><subject>Precipitation</subject><subject>Rain</subject><subject>Rainfall</subject><subject>Seeds</subject><subject>Sensitivity analysis</subject><subject>soybean</subject><subject>Soybeans</subject><subject>vegetation period</subject><subject>Weather</subject><subject>weather conditions</subject><subject>yield</subject><issn>2077-0472</issn><issn>2077-0472</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUcFu1DAQjRBIVKVfwMUSFzhsseMkTo7RlrarLnAoHBBC1sQer7x47cV2FvJTfGOzXYQ4MJc3mnnzRvOmKF4yesl5R9_CJlo1ujxGZCVtqKirJ8VZSYVY0EqUT__JnxcXKW3pHB3jLW3Oit_9fu-sgmyDJ8GQPmZrrLLgyAcc4yPknyF-J_fok832YPNEeg9uSjaRHMhKo59nJnKHE7nCjHFnPficjnK3EA-YsvUbcgUZCXhNvlh0-ti8D9OA4MnrGzcp65Hs4Bf5ur78Rt5jjNa5N2Q532UPEEk_bsaU4UXxzIBLePEHz4vP1-8-LW8X6483q2W_XijO2rxoq0pQw7q65FR3TFcM20HVjM_uaFY1gK3gxghQHWijhYKWD7XAThtVw1Dy82J10tUBtnIf7Q7iJANY-VgIcSNhdko5lGiYbmFgTDdQYdsMFLVCLNuadUazYdZ6ddLax_BjnN2Q2zDG2cEky0Z0DWsE7WYWP7FUDClFNH-3MiqPf5b_-TN_AFmgoe8</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Niedbała, Gniewko</creator><creator>Kurasiak-Popowska, Danuta</creator><creator>Piekutowska, Magdalena</creator><creator>Wojciechowski, Tomasz</creator><creator>Kwiatek, Michał</creator><creator>Nawracała, Jerzy</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7X2</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>M0K</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>SOI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2214-406X</orcidid><orcidid>https://orcid.org/0000-0001-9442-3124</orcidid><orcidid>https://orcid.org/0000-0002-5301-4719</orcidid><orcidid>https://orcid.org/0000-0003-3721-6473</orcidid><orcidid>https://orcid.org/0000-0002-2222-6866</orcidid></search><sort><creationdate>20220601</creationdate><title>Application of Artificial Neural Network Sensitivity Analysis to Identify Key Determinants of Harvesting Date and Yield of Soybean (Glycine max [L.] Merrill) Cultivar Augusta</title><author>Niedbała, Gniewko ; Kurasiak-Popowska, Danuta ; Piekutowska, Magdalena ; Wojciechowski, Tomasz ; Kwiatek, Michał ; Nawracała, Jerzy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-84470f195230d91d41e8bc513607d146ae873ff7ac9adfd7ca83b57e9dfc5ab23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptation</topic><topic>Agricultural production</topic><topic>Air temperature</topic><topic>artificial neural network</topic><topic>Artificial neural networks</topic><topic>Crop yield</topic><topic>Cultivars</topic><topic>Dependent variables</topic><topic>Flowering</topic><topic>Genotype & phenotype</topic><topic>Genotypes</topic><topic>Glycine max</topic><topic>Growing season</topic><topic>Harvest</topic><topic>Life sciences</topic><topic>Neural networks</topic><topic>Planting</topic><topic>Precipitation</topic><topic>Rain</topic><topic>Rainfall</topic><topic>Seeds</topic><topic>Sensitivity analysis</topic><topic>soybean</topic><topic>Soybeans</topic><topic>vegetation period</topic><topic>Weather</topic><topic>weather conditions</topic><topic>yield</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niedbała, Gniewko</creatorcontrib><creatorcontrib>Kurasiak-Popowska, Danuta</creatorcontrib><creatorcontrib>Piekutowska, Magdalena</creatorcontrib><creatorcontrib>Wojciechowski, Tomasz</creatorcontrib><creatorcontrib>Kwiatek, Michał</creatorcontrib><creatorcontrib>Nawracała, Jerzy</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Agricultural Science Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Agricultural Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environment Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Agriculture (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niedbała, Gniewko</au><au>Kurasiak-Popowska, Danuta</au><au>Piekutowska, Magdalena</au><au>Wojciechowski, Tomasz</au><au>Kwiatek, Michał</au><au>Nawracała, Jerzy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Artificial Neural Network Sensitivity Analysis to Identify Key Determinants of Harvesting Date and Yield of Soybean (Glycine max [L.] Merrill) Cultivar Augusta</atitle><jtitle>Agriculture (Basel)</jtitle><date>2022-06-01</date><risdate>2022</risdate><volume>12</volume><issue>6</issue><spage>754</spage><pages>754-</pages><issn>2077-0472</issn><eissn>2077-0472</eissn><abstract>Genotype and weather conditions play crucial roles in determining the volume and stability of a soybean yield. The aim of this study was to identify the key meteorological factors affecting the harvest date (model M_HARV) and yield of the soybean variety Augusta (model M_YIELD) using a neural network sensitivity analysis. The dates of the start of flowering and maturity, the yield data, the average daily temperatures and precipitation were collected, and the Selyaninov hydrothermal coefficients were calculated during a fifteen-year study (2005–2020 growing seasons). During the experiment, highly variable weather conditions occurred, strongly modifying the course of phenological phases in soybean and the achieved seed yield of Augusta cultivar. The harvesting of mature soybean seeds took place between 131 and 156 days after sowing, while the harvested yield ranged from 0.6 t·ha−1 to 2.6 t·ha−1. The sensitivity analysis of the MLP neural network made it possible to identify the factors which had the greatest impact on the tested dependent variables among all the analyzed factors. It was revealed that the variables assigned ranks 1 and 2 in the sensitivity analysis of the neural network forming the M_HARV model were total rainfall in the first decade of June and the first decade of August. The variables with the highest impact on the Augusta soybean seed yield (model M_YIELD) were the mean daily air temperature in the second decade of May and the Seljaninov coefficient values calculated for the sowing–flowering date period.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/agriculture12060754</doi><orcidid>https://orcid.org/0000-0002-2214-406X</orcidid><orcidid>https://orcid.org/0000-0001-9442-3124</orcidid><orcidid>https://orcid.org/0000-0002-5301-4719</orcidid><orcidid>https://orcid.org/0000-0003-3721-6473</orcidid><orcidid>https://orcid.org/0000-0002-2222-6866</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2077-0472 |
ispartof | Agriculture (Basel), 2022-06, Vol.12 (6), p.754 |
issn | 2077-0472 2077-0472 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ef1d8ab11d6a4e86b0edcee28519fd1b |
source | Publicly Available Content Database |
subjects | Adaptation Agricultural production Air temperature artificial neural network Artificial neural networks Crop yield Cultivars Dependent variables Flowering Genotype & phenotype Genotypes Glycine max Growing season Harvest Life sciences Neural networks Planting Precipitation Rain Rainfall Seeds Sensitivity analysis soybean Soybeans vegetation period Weather weather conditions yield |
title | Application of Artificial Neural Network Sensitivity Analysis to Identify Key Determinants of Harvesting Date and Yield of Soybean (Glycine max [L.] Merrill) Cultivar Augusta |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A30%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Artificial%20Neural%20Network%20Sensitivity%20Analysis%20to%20Identify%20Key%20Determinants%20of%20Harvesting%20Date%20and%20Yield%20of%20Soybean%20(Glycine%20max%20%5BL.%5D%20Merrill)%20Cultivar%20Augusta&rft.jtitle=Agriculture%20(Basel)&rft.au=Niedba%C5%82a,%20Gniewko&rft.date=2022-06-01&rft.volume=12&rft.issue=6&rft.spage=754&rft.pages=754-&rft.issn=2077-0472&rft.eissn=2077-0472&rft_id=info:doi/10.3390/agriculture12060754&rft_dat=%3Cproquest_doaj_%3E2679616709%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c318t-84470f195230d91d41e8bc513607d146ae873ff7ac9adfd7ca83b57e9dfc5ab23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2679616709&rft_id=info:pmid/&rfr_iscdi=true |