Loading…
Design and Optimization of Aluminum Member’s Sections for Building Efficient 120–160 kV Power Transmission Towers
The use of aluminum in civil engineering applications has increased significantly over the past decades. Aluminum is a durable, lightweight, and recyclable material that can provide alternative structural solutions for building power transmission towers. In order to achieve this objective, it is nec...
Saved in:
Published in: | Engineering proceedings 2023-01, Vol.43 (1), p.5 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The use of aluminum in civil engineering applications has increased significantly over the past decades. Aluminum is a durable, lightweight, and recyclable material that can provide alternative structural solutions for building power transmission towers. In order to achieve this objective, it is necessary to develop structural members that take advantage of specific properties of the material, such as low density, high strength, resistance to corrosion, and the geometric flexibility that aluminum extrusions provide to design robust and easy-to-assemble structures. This paper presents a section optimization study of an existing medium-voltage steel 120–160 kV lattice tower owned by Hydro-Québec, considering the use of various extruded aluminum sections. The proposed optimized aluminum sections are compared with the steel sections of the existing tower. The study’s main objective is to optimize the tower’s aluminum sections. A SAP2000 structural finite element stick model of the tower coupled to a Matlab optimization routine is used to optimize the aluminum sections. ASCE10-15 and CSA-S157-17R22 standards are used to impose the design constraints for selecting the optimized aluminum square and octagonal hollow sections, with and without stiffeners. This study proposes optimized section shapes suitable for constructing aluminum lattice transmission towers. The study reveals that the proposed aluminum tower prototype is twice as light as its steel counterpart. The aluminum members’ price is also very competitive compared to steel. |
---|---|
ISSN: | 2673-4591 |
DOI: | 10.3390/engproc2023043005 |