Loading…
Duality defects in E 8
Abstract We classify all non-invertible Kramers-Wannier duality defects in the E 8 lattice Vertex Operator Algebra (i.e. the chiral (E 8)1 WZW model) coming from ℤ m symmetries. We illustrate how these defects are systematically obtainable as ℤ2 twists of invariant sub-VOAs, compute defect partition...
Saved in:
Published in: | The journal of high energy physics 2022-10, Vol.2022 (10), p.1-64 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 64 |
container_issue | 10 |
container_start_page | 1 |
container_title | The journal of high energy physics |
container_volume | 2022 |
creator | Ivan M. Burbano Justin Kulp Jonas Neuser |
description | Abstract We classify all non-invertible Kramers-Wannier duality defects in the E 8 lattice Vertex Operator Algebra (i.e. the chiral (E 8)1 WZW model) coming from ℤ m symmetries. We illustrate how these defects are systematically obtainable as ℤ2 twists of invariant sub-VOAs, compute defect partition functions for small m, and verify our results against other techniques. Throughout, we focus on taking a physical perspective and highlight the important moving pieces involved in the calculations. Kac’s theorem for finite automorphisms of Lie algebras and contemporary results on holomorphic VOAs play a role. We also provide a perspective from the point of view of (2+1)d Topological Field Theory and provide a rigorous proof that all corresponding Tambara-Yamagami actions on holomorphic VOAs can be obtained in this manner. We include a list of directions for future studies. |
doi_str_mv | 10.1007/JHEP10(2022)187 |
format | article |
fullrecord | <record><control><sourceid>doaj</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ef3faa0432884b858cd7088034414e27</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ef3faa0432884b858cd7088034414e27</doaj_id><sourcerecordid>oai_doaj_org_article_ef3faa0432884b858cd7088034414e27</sourcerecordid><originalsourceid>FETCH-LOGICAL-d221t-b33f72733dc5ddb5a65337663116fb91efb49d1da81d06348e8ee1b76a8535163</originalsourceid><addsrcrecordid>eNotjj1LxEAQQBdB8DxttU2pRXRmZz8mpZw57-RAC63DbHZXckQjSSzu3ytq9eAVj6fUJcINAvjbx039jHClQetrZH-kFgi6Ktn46kSdTtMeAC1WsFAX91_Sd_OhiCmndp6K7qOoCz5Tx1n6KZ3_c6le1_XLalPunh62q7tdGbXGuQxE2WtPFFsbY7DiLJF3jhBdDhWmHEwVMQpjBEeGE6eEwTthSxYdLdX2rxsH2TefY_cu46EZpGt-xTC-NTLOXdunJmXKImBIM5vAltvogRnIGDTpZ-Ib01VErw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Duality defects in E 8</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Ivan M. Burbano ; Justin Kulp ; Jonas Neuser</creator><creatorcontrib>Ivan M. Burbano ; Justin Kulp ; Jonas Neuser</creatorcontrib><description>Abstract We classify all non-invertible Kramers-Wannier duality defects in the E 8 lattice Vertex Operator Algebra (i.e. the chiral (E 8)1 WZW model) coming from ℤ m symmetries. We illustrate how these defects are systematically obtainable as ℤ2 twists of invariant sub-VOAs, compute defect partition functions for small m, and verify our results against other techniques. Throughout, we focus on taking a physical perspective and highlight the important moving pieces involved in the calculations. Kac’s theorem for finite automorphisms of Lie algebras and contemporary results on holomorphic VOAs play a role. We also provide a perspective from the point of view of (2+1)d Topological Field Theory and provide a rigorous proof that all corresponding Tambara-Yamagami actions on holomorphic VOAs can be obtained in this manner. We include a list of directions for future studies.</description><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP10(2022)187</identifier><language>eng</language><publisher>SpringerOpen</publisher><subject>Anomalies in Field and String Theories ; Discrete Symmetries ; Global Symmetries</subject><ispartof>The journal of high energy physics, 2022-10, Vol.2022 (10), p.1-64</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ivan M. Burbano</creatorcontrib><creatorcontrib>Justin Kulp</creatorcontrib><creatorcontrib>Jonas Neuser</creatorcontrib><title>Duality defects in E 8</title><title>The journal of high energy physics</title><description>Abstract We classify all non-invertible Kramers-Wannier duality defects in the E 8 lattice Vertex Operator Algebra (i.e. the chiral (E 8)1 WZW model) coming from ℤ m symmetries. We illustrate how these defects are systematically obtainable as ℤ2 twists of invariant sub-VOAs, compute defect partition functions for small m, and verify our results against other techniques. Throughout, we focus on taking a physical perspective and highlight the important moving pieces involved in the calculations. Kac’s theorem for finite automorphisms of Lie algebras and contemporary results on holomorphic VOAs play a role. We also provide a perspective from the point of view of (2+1)d Topological Field Theory and provide a rigorous proof that all corresponding Tambara-Yamagami actions on holomorphic VOAs can be obtained in this manner. We include a list of directions for future studies.</description><subject>Anomalies in Field and String Theories</subject><subject>Discrete Symmetries</subject><subject>Global Symmetries</subject><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNotjj1LxEAQQBdB8DxttU2pRXRmZz8mpZw57-RAC63DbHZXckQjSSzu3ytq9eAVj6fUJcINAvjbx039jHClQetrZH-kFgi6Ktn46kSdTtMeAC1WsFAX91_Sd_OhiCmndp6K7qOoCz5Tx1n6KZ3_c6le1_XLalPunh62q7tdGbXGuQxE2WtPFFsbY7DiLJF3jhBdDhWmHEwVMQpjBEeGE6eEwTthSxYdLdX2rxsH2TefY_cu46EZpGt-xTC-NTLOXdunJmXKImBIM5vAltvogRnIGDTpZ-Ib01VErw</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Ivan M. Burbano</creator><creator>Justin Kulp</creator><creator>Jonas Neuser</creator><general>SpringerOpen</general><scope>DOA</scope></search><sort><creationdate>20221001</creationdate><title>Duality defects in E 8</title><author>Ivan M. Burbano ; Justin Kulp ; Jonas Neuser</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d221t-b33f72733dc5ddb5a65337663116fb91efb49d1da81d06348e8ee1b76a8535163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anomalies in Field and String Theories</topic><topic>Discrete Symmetries</topic><topic>Global Symmetries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ivan M. Burbano</creatorcontrib><creatorcontrib>Justin Kulp</creatorcontrib><creatorcontrib>Jonas Neuser</creatorcontrib><collection>Directory of Open Access Journals</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ivan M. Burbano</au><au>Justin Kulp</au><au>Jonas Neuser</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Duality defects in E 8</atitle><jtitle>The journal of high energy physics</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>2022</volume><issue>10</issue><spage>1</spage><epage>64</epage><pages>1-64</pages><eissn>1029-8479</eissn><abstract>Abstract We classify all non-invertible Kramers-Wannier duality defects in the E 8 lattice Vertex Operator Algebra (i.e. the chiral (E 8)1 WZW model) coming from ℤ m symmetries. We illustrate how these defects are systematically obtainable as ℤ2 twists of invariant sub-VOAs, compute defect partition functions for small m, and verify our results against other techniques. Throughout, we focus on taking a physical perspective and highlight the important moving pieces involved in the calculations. Kac’s theorem for finite automorphisms of Lie algebras and contemporary results on holomorphic VOAs play a role. We also provide a perspective from the point of view of (2+1)d Topological Field Theory and provide a rigorous proof that all corresponding Tambara-Yamagami actions on holomorphic VOAs can be obtained in this manner. We include a list of directions for future studies.</abstract><pub>SpringerOpen</pub><doi>10.1007/JHEP10(2022)187</doi><tpages>64</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1029-8479 |
ispartof | The journal of high energy physics, 2022-10, Vol.2022 (10), p.1-64 |
issn | 1029-8479 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ef3faa0432884b858cd7088034414e27 |
source | Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access |
subjects | Anomalies in Field and String Theories Discrete Symmetries Global Symmetries |
title | Duality defects in E 8 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A45%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Duality%20defects%20in%20E%208&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Ivan%20M.%20Burbano&rft.date=2022-10-01&rft.volume=2022&rft.issue=10&rft.spage=1&rft.epage=64&rft.pages=1-64&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP10(2022)187&rft_dat=%3Cdoaj%3Eoai_doaj_org_article_ef3faa0432884b858cd7088034414e27%3C/doaj%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-d221t-b33f72733dc5ddb5a65337663116fb91efb49d1da81d06348e8ee1b76a8535163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |