Loading…

Chemoenzymatic synthesis of sulfur-linked sugar polymers as heparanase inhibitors

Complex carbohydrates (glycans) are major players in all organisms due to their structural, energy, and communication roles. This last essential role involves interacting and/or signaling through a plethora of glycan-binding proteins. The design and synthesis of glycans as potential drug candidates...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2022-12, Vol.13 (1), p.7438-12, Article 7438
Main Authors: He, Peng, Zhang, Xing, Xia, Ke, Green, Dixy E., Baytas, Sultan, Xu, Yongmei, Pham, Truong, Liu, Jian, Zhang, Fuming, Almond, Andrew, Linhardt, Robert J., DeAngelis, Paul L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-de5ba722f712816218e9f9353daf7d7fb0d4b2b3379d66f564ffe6836651d9a03
cites cdi_FETCH-LOGICAL-c540t-de5ba722f712816218e9f9353daf7d7fb0d4b2b3379d66f564ffe6836651d9a03
container_end_page 12
container_issue 1
container_start_page 7438
container_title Nature communications
container_volume 13
creator He, Peng
Zhang, Xing
Xia, Ke
Green, Dixy E.
Baytas, Sultan
Xu, Yongmei
Pham, Truong
Liu, Jian
Zhang, Fuming
Almond, Andrew
Linhardt, Robert J.
DeAngelis, Paul L.
description Complex carbohydrates (glycans) are major players in all organisms due to their structural, energy, and communication roles. This last essential role involves interacting and/or signaling through a plethora of glycan-binding proteins. The design and synthesis of glycans as potential drug candidates that selectively alter or perturb metabolic processes is challenging. Here we describe the first reported sulfur-linked polysaccharides with potentially altered conformational state(s) that are recalcitrant to digestion by heparanase, an enzyme important in human health and disease. An artificial sugar donor with a sulfhydryl functionality is synthesized and enzymatically incorporated into polysaccharide chains utilizing heparosan synthase. Used alone, this donor adds a single thio-sugar onto the termini of nascent chains. Surprisingly, in chain co-polymerization reactions with a second donor, this thiol-terminated heparosan also serves as an acceptor to form an unnatural thio-glycosidic bond (‘ S -link’) between sugar residues in place of a natural ‘ O -linked’ bond. S -linked heparan sulfate analogs are not cleaved by human heparanase. Furthermore, the analogs act as competitive inhibitors with > ~200-fold higher potency than expected; as a rationale, molecular dynamic simulations suggest that the S -link polymer conformations mimic aspects of the transition state. Our analogs form the basis for future cancer therapeutics and modulators of protein/sugar interactions. Heparin is a family of complex carbohydrates binding to proteins to modulate cell activities. Here the authors report the synthesis, and conformations simulations of S -linked hemi-A heparosan [GlcA-S-GlcNAc] n , a thio-glycosidic uncleavable polysaccharide, and test it as human heparanase inhibitor.
doi_str_mv 10.1038/s41467-022-34788-3
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ef461400591343048c9e59e0041eaaf1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ef461400591343048c9e59e0041eaaf1</doaj_id><sourcerecordid>2745195902</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-de5ba722f712816218e9f9353daf7d7fb0d4b2b3379d66f564ffe6836651d9a03</originalsourceid><addsrcrecordid>eNp9kctu1TAQhiMEolXpC7BAkVgHfL9skNARl0qVEBKsLScen_iQ2Ac7QTo8PW5TSrvBG1_mn29m_DfNS4zeYETV28IwE7JDhHSUSaU6-qQ5J4jhDktCnz44nzWXpRxQXVRjxdjz5owKJpCQ6Lz5uhthThB_n2a7hKEtp7iMUEJpk2_LOvk1d1OIP8DV297m9pim0wy5tLa0IxxtttEWaEMcQx-WlMuL5pm3U4HLu_2i-f7xw7fd5-76y6er3fvrbuAMLZ0D3ltJiJeYKCwIVqC9ppw666WTvkeO9aSnVGonhOeCeQ9CUSE4dtoietFcbVyX7MEcc5htPplkg7l9SHlvbK4jTWDAM4EZQlxjyihiatDANaD6Q2Ctx5X1bmMd134GN0Bcsp0eQR9HYhjNPv0yWmIlxU0zr-8AOf1coSzmkNYc6_yGSMax5hqRqiKbasiplAz-vgJG5sZVs7lqqqvm1lVDa9Krh73dp_z1sAroJig1FPeQ_9X-D_YPzYWuFg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2745195902</pqid></control><display><type>article</type><title>Chemoenzymatic synthesis of sulfur-linked sugar polymers as heparanase inhibitors</title><source>Open Access: PubMed Central</source><source>Nature</source><source>Publicly Available Content (ProQuest)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>He, Peng ; Zhang, Xing ; Xia, Ke ; Green, Dixy E. ; Baytas, Sultan ; Xu, Yongmei ; Pham, Truong ; Liu, Jian ; Zhang, Fuming ; Almond, Andrew ; Linhardt, Robert J. ; DeAngelis, Paul L.</creator><creatorcontrib>He, Peng ; Zhang, Xing ; Xia, Ke ; Green, Dixy E. ; Baytas, Sultan ; Xu, Yongmei ; Pham, Truong ; Liu, Jian ; Zhang, Fuming ; Almond, Andrew ; Linhardt, Robert J. ; DeAngelis, Paul L.</creatorcontrib><description>Complex carbohydrates (glycans) are major players in all organisms due to their structural, energy, and communication roles. This last essential role involves interacting and/or signaling through a plethora of glycan-binding proteins. The design and synthesis of glycans as potential drug candidates that selectively alter or perturb metabolic processes is challenging. Here we describe the first reported sulfur-linked polysaccharides with potentially altered conformational state(s) that are recalcitrant to digestion by heparanase, an enzyme important in human health and disease. An artificial sugar donor with a sulfhydryl functionality is synthesized and enzymatically incorporated into polysaccharide chains utilizing heparosan synthase. Used alone, this donor adds a single thio-sugar onto the termini of nascent chains. Surprisingly, in chain co-polymerization reactions with a second donor, this thiol-terminated heparosan also serves as an acceptor to form an unnatural thio-glycosidic bond (‘ S -link’) between sugar residues in place of a natural ‘ O -linked’ bond. S -linked heparan sulfate analogs are not cleaved by human heparanase. Furthermore, the analogs act as competitive inhibitors with &gt; ~200-fold higher potency than expected; as a rationale, molecular dynamic simulations suggest that the S -link polymer conformations mimic aspects of the transition state. Our analogs form the basis for future cancer therapeutics and modulators of protein/sugar interactions. Heparin is a family of complex carbohydrates binding to proteins to modulate cell activities. Here the authors report the synthesis, and conformations simulations of S -linked hemi-A heparosan [GlcA-S-GlcNAc] n , a thio-glycosidic uncleavable polysaccharide, and test it as human heparanase inhibitor.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-022-34788-3</identifier><identifier>PMID: 36460670</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/45/221 ; 631/45/535/878/1263 ; 631/61 ; 639/638/309/2420 ; 639/638/92/72/1205 ; Analogs ; Binding ; Carbohydrates ; Chemical synthesis ; Copolymerization ; Drug development ; Glucuronidase ; Glycan ; Heparan sulfate ; Heparin ; Humanities and Social Sciences ; Humans ; Inhibitors ; Modulators ; Molecular dynamics ; multidisciplinary ; Polymers ; Polysaccharides ; Proteins ; Saccharides ; Science ; Science (multidisciplinary) ; Sugar ; Sugars ; Sulfhydryl Compounds ; Sulfur</subject><ispartof>Nature communications, 2022-12, Vol.13 (1), p.7438-12, Article 7438</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-de5ba722f712816218e9f9353daf7d7fb0d4b2b3379d66f564ffe6836651d9a03</citedby><cites>FETCH-LOGICAL-c540t-de5ba722f712816218e9f9353daf7d7fb0d4b2b3379d66f564ffe6836651d9a03</cites><orcidid>0000-0002-9929-6467 ; 0000-0003-2219-5833 ; 0000-0002-7549-1890 ; 0000-0002-6237-0889 ; 0000-0001-7471-6333 ; 0000-0002-2699-3448 ; 0000-0002-8843-1344 ; 0000-0003-2803-3704 ; 0000-0001-9699-9901 ; 0000-0002-2308-5196</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2745195902/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2745195902?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36460670$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>He, Peng</creatorcontrib><creatorcontrib>Zhang, Xing</creatorcontrib><creatorcontrib>Xia, Ke</creatorcontrib><creatorcontrib>Green, Dixy E.</creatorcontrib><creatorcontrib>Baytas, Sultan</creatorcontrib><creatorcontrib>Xu, Yongmei</creatorcontrib><creatorcontrib>Pham, Truong</creatorcontrib><creatorcontrib>Liu, Jian</creatorcontrib><creatorcontrib>Zhang, Fuming</creatorcontrib><creatorcontrib>Almond, Andrew</creatorcontrib><creatorcontrib>Linhardt, Robert J.</creatorcontrib><creatorcontrib>DeAngelis, Paul L.</creatorcontrib><title>Chemoenzymatic synthesis of sulfur-linked sugar polymers as heparanase inhibitors</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Complex carbohydrates (glycans) are major players in all organisms due to their structural, energy, and communication roles. This last essential role involves interacting and/or signaling through a plethora of glycan-binding proteins. The design and synthesis of glycans as potential drug candidates that selectively alter or perturb metabolic processes is challenging. Here we describe the first reported sulfur-linked polysaccharides with potentially altered conformational state(s) that are recalcitrant to digestion by heparanase, an enzyme important in human health and disease. An artificial sugar donor with a sulfhydryl functionality is synthesized and enzymatically incorporated into polysaccharide chains utilizing heparosan synthase. Used alone, this donor adds a single thio-sugar onto the termini of nascent chains. Surprisingly, in chain co-polymerization reactions with a second donor, this thiol-terminated heparosan also serves as an acceptor to form an unnatural thio-glycosidic bond (‘ S -link’) between sugar residues in place of a natural ‘ O -linked’ bond. S -linked heparan sulfate analogs are not cleaved by human heparanase. Furthermore, the analogs act as competitive inhibitors with &gt; ~200-fold higher potency than expected; as a rationale, molecular dynamic simulations suggest that the S -link polymer conformations mimic aspects of the transition state. Our analogs form the basis for future cancer therapeutics and modulators of protein/sugar interactions. Heparin is a family of complex carbohydrates binding to proteins to modulate cell activities. Here the authors report the synthesis, and conformations simulations of S -linked hemi-A heparosan [GlcA-S-GlcNAc] n , a thio-glycosidic uncleavable polysaccharide, and test it as human heparanase inhibitor.</description><subject>631/45/221</subject><subject>631/45/535/878/1263</subject><subject>631/61</subject><subject>639/638/309/2420</subject><subject>639/638/92/72/1205</subject><subject>Analogs</subject><subject>Binding</subject><subject>Carbohydrates</subject><subject>Chemical synthesis</subject><subject>Copolymerization</subject><subject>Drug development</subject><subject>Glucuronidase</subject><subject>Glycan</subject><subject>Heparan sulfate</subject><subject>Heparin</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Inhibitors</subject><subject>Modulators</subject><subject>Molecular dynamics</subject><subject>multidisciplinary</subject><subject>Polymers</subject><subject>Polysaccharides</subject><subject>Proteins</subject><subject>Saccharides</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sugar</subject><subject>Sugars</subject><subject>Sulfhydryl Compounds</subject><subject>Sulfur</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kctu1TAQhiMEolXpC7BAkVgHfL9skNARl0qVEBKsLScen_iQ2Ac7QTo8PW5TSrvBG1_mn29m_DfNS4zeYETV28IwE7JDhHSUSaU6-qQ5J4jhDktCnz44nzWXpRxQXVRjxdjz5owKJpCQ6Lz5uhthThB_n2a7hKEtp7iMUEJpk2_LOvk1d1OIP8DV297m9pim0wy5tLa0IxxtttEWaEMcQx-WlMuL5pm3U4HLu_2i-f7xw7fd5-76y6er3fvrbuAMLZ0D3ltJiJeYKCwIVqC9ppw666WTvkeO9aSnVGonhOeCeQ9CUSE4dtoietFcbVyX7MEcc5htPplkg7l9SHlvbK4jTWDAM4EZQlxjyihiatDANaD6Q2Ctx5X1bmMd134GN0Bcsp0eQR9HYhjNPv0yWmIlxU0zr-8AOf1coSzmkNYc6_yGSMax5hqRqiKbasiplAz-vgJG5sZVs7lqqqvm1lVDa9Krh73dp_z1sAroJig1FPeQ_9X-D_YPzYWuFg</recordid><startdate>20221202</startdate><enddate>20221202</enddate><creator>He, Peng</creator><creator>Zhang, Xing</creator><creator>Xia, Ke</creator><creator>Green, Dixy E.</creator><creator>Baytas, Sultan</creator><creator>Xu, Yongmei</creator><creator>Pham, Truong</creator><creator>Liu, Jian</creator><creator>Zhang, Fuming</creator><creator>Almond, Andrew</creator><creator>Linhardt, Robert J.</creator><creator>DeAngelis, Paul L.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9929-6467</orcidid><orcidid>https://orcid.org/0000-0003-2219-5833</orcidid><orcidid>https://orcid.org/0000-0002-7549-1890</orcidid><orcidid>https://orcid.org/0000-0002-6237-0889</orcidid><orcidid>https://orcid.org/0000-0001-7471-6333</orcidid><orcidid>https://orcid.org/0000-0002-2699-3448</orcidid><orcidid>https://orcid.org/0000-0002-8843-1344</orcidid><orcidid>https://orcid.org/0000-0003-2803-3704</orcidid><orcidid>https://orcid.org/0000-0001-9699-9901</orcidid><orcidid>https://orcid.org/0000-0002-2308-5196</orcidid></search><sort><creationdate>20221202</creationdate><title>Chemoenzymatic synthesis of sulfur-linked sugar polymers as heparanase inhibitors</title><author>He, Peng ; Zhang, Xing ; Xia, Ke ; Green, Dixy E. ; Baytas, Sultan ; Xu, Yongmei ; Pham, Truong ; Liu, Jian ; Zhang, Fuming ; Almond, Andrew ; Linhardt, Robert J. ; DeAngelis, Paul L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-de5ba722f712816218e9f9353daf7d7fb0d4b2b3379d66f564ffe6836651d9a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>631/45/221</topic><topic>631/45/535/878/1263</topic><topic>631/61</topic><topic>639/638/309/2420</topic><topic>639/638/92/72/1205</topic><topic>Analogs</topic><topic>Binding</topic><topic>Carbohydrates</topic><topic>Chemical synthesis</topic><topic>Copolymerization</topic><topic>Drug development</topic><topic>Glucuronidase</topic><topic>Glycan</topic><topic>Heparan sulfate</topic><topic>Heparin</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Inhibitors</topic><topic>Modulators</topic><topic>Molecular dynamics</topic><topic>multidisciplinary</topic><topic>Polymers</topic><topic>Polysaccharides</topic><topic>Proteins</topic><topic>Saccharides</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sugar</topic><topic>Sugars</topic><topic>Sulfhydryl Compounds</topic><topic>Sulfur</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Peng</creatorcontrib><creatorcontrib>Zhang, Xing</creatorcontrib><creatorcontrib>Xia, Ke</creatorcontrib><creatorcontrib>Green, Dixy E.</creatorcontrib><creatorcontrib>Baytas, Sultan</creatorcontrib><creatorcontrib>Xu, Yongmei</creatorcontrib><creatorcontrib>Pham, Truong</creatorcontrib><creatorcontrib>Liu, Jian</creatorcontrib><creatorcontrib>Zhang, Fuming</creatorcontrib><creatorcontrib>Almond, Andrew</creatorcontrib><creatorcontrib>Linhardt, Robert J.</creatorcontrib><creatorcontrib>DeAngelis, Paul L.</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest - Health &amp; Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Peng</au><au>Zhang, Xing</au><au>Xia, Ke</au><au>Green, Dixy E.</au><au>Baytas, Sultan</au><au>Xu, Yongmei</au><au>Pham, Truong</au><au>Liu, Jian</au><au>Zhang, Fuming</au><au>Almond, Andrew</au><au>Linhardt, Robert J.</au><au>DeAngelis, Paul L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemoenzymatic synthesis of sulfur-linked sugar polymers as heparanase inhibitors</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2022-12-02</date><risdate>2022</risdate><volume>13</volume><issue>1</issue><spage>7438</spage><epage>12</epage><pages>7438-12</pages><artnum>7438</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Complex carbohydrates (glycans) are major players in all organisms due to their structural, energy, and communication roles. This last essential role involves interacting and/or signaling through a plethora of glycan-binding proteins. The design and synthesis of glycans as potential drug candidates that selectively alter or perturb metabolic processes is challenging. Here we describe the first reported sulfur-linked polysaccharides with potentially altered conformational state(s) that are recalcitrant to digestion by heparanase, an enzyme important in human health and disease. An artificial sugar donor with a sulfhydryl functionality is synthesized and enzymatically incorporated into polysaccharide chains utilizing heparosan synthase. Used alone, this donor adds a single thio-sugar onto the termini of nascent chains. Surprisingly, in chain co-polymerization reactions with a second donor, this thiol-terminated heparosan also serves as an acceptor to form an unnatural thio-glycosidic bond (‘ S -link’) between sugar residues in place of a natural ‘ O -linked’ bond. S -linked heparan sulfate analogs are not cleaved by human heparanase. Furthermore, the analogs act as competitive inhibitors with &gt; ~200-fold higher potency than expected; as a rationale, molecular dynamic simulations suggest that the S -link polymer conformations mimic aspects of the transition state. Our analogs form the basis for future cancer therapeutics and modulators of protein/sugar interactions. Heparin is a family of complex carbohydrates binding to proteins to modulate cell activities. Here the authors report the synthesis, and conformations simulations of S -linked hemi-A heparosan [GlcA-S-GlcNAc] n , a thio-glycosidic uncleavable polysaccharide, and test it as human heparanase inhibitor.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36460670</pmid><doi>10.1038/s41467-022-34788-3</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9929-6467</orcidid><orcidid>https://orcid.org/0000-0003-2219-5833</orcidid><orcidid>https://orcid.org/0000-0002-7549-1890</orcidid><orcidid>https://orcid.org/0000-0002-6237-0889</orcidid><orcidid>https://orcid.org/0000-0001-7471-6333</orcidid><orcidid>https://orcid.org/0000-0002-2699-3448</orcidid><orcidid>https://orcid.org/0000-0002-8843-1344</orcidid><orcidid>https://orcid.org/0000-0003-2803-3704</orcidid><orcidid>https://orcid.org/0000-0001-9699-9901</orcidid><orcidid>https://orcid.org/0000-0002-2308-5196</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2022-12, Vol.13 (1), p.7438-12, Article 7438
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ef461400591343048c9e59e0041eaaf1
source Open Access: PubMed Central; Nature; Publicly Available Content (ProQuest); Springer Nature - nature.com Journals - Fully Open Access
subjects 631/45/221
631/45/535/878/1263
631/61
639/638/309/2420
639/638/92/72/1205
Analogs
Binding
Carbohydrates
Chemical synthesis
Copolymerization
Drug development
Glucuronidase
Glycan
Heparan sulfate
Heparin
Humanities and Social Sciences
Humans
Inhibitors
Modulators
Molecular dynamics
multidisciplinary
Polymers
Polysaccharides
Proteins
Saccharides
Science
Science (multidisciplinary)
Sugar
Sugars
Sulfhydryl Compounds
Sulfur
title Chemoenzymatic synthesis of sulfur-linked sugar polymers as heparanase inhibitors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A40%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemoenzymatic%20synthesis%20of%20sulfur-linked%20sugar%20polymers%20as%20heparanase%20inhibitors&rft.jtitle=Nature%20communications&rft.au=He,%20Peng&rft.date=2022-12-02&rft.volume=13&rft.issue=1&rft.spage=7438&rft.epage=12&rft.pages=7438-12&rft.artnum=7438&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-022-34788-3&rft_dat=%3Cproquest_doaj_%3E2745195902%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-de5ba722f712816218e9f9353daf7d7fb0d4b2b3379d66f564ffe6836651d9a03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2745195902&rft_id=info:pmid/36460670&rfr_iscdi=true