Loading…
Chemoenzymatic synthesis of sulfur-linked sugar polymers as heparanase inhibitors
Complex carbohydrates (glycans) are major players in all organisms due to their structural, energy, and communication roles. This last essential role involves interacting and/or signaling through a plethora of glycan-binding proteins. The design and synthesis of glycans as potential drug candidates...
Saved in:
Published in: | Nature communications 2022-12, Vol.13 (1), p.7438-12, Article 7438 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-de5ba722f712816218e9f9353daf7d7fb0d4b2b3379d66f564ffe6836651d9a03 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-de5ba722f712816218e9f9353daf7d7fb0d4b2b3379d66f564ffe6836651d9a03 |
container_end_page | 12 |
container_issue | 1 |
container_start_page | 7438 |
container_title | Nature communications |
container_volume | 13 |
creator | He, Peng Zhang, Xing Xia, Ke Green, Dixy E. Baytas, Sultan Xu, Yongmei Pham, Truong Liu, Jian Zhang, Fuming Almond, Andrew Linhardt, Robert J. DeAngelis, Paul L. |
description | Complex carbohydrates (glycans) are major players in all organisms due to their structural, energy, and communication roles. This last essential role involves interacting and/or signaling through a plethora of glycan-binding proteins. The design and synthesis of glycans as potential drug candidates that selectively alter or perturb metabolic processes is challenging. Here we describe the first reported sulfur-linked polysaccharides with potentially altered conformational state(s) that are recalcitrant to digestion by heparanase, an enzyme important in human health and disease. An artificial sugar donor with a sulfhydryl functionality is synthesized and enzymatically incorporated into polysaccharide chains utilizing heparosan synthase. Used alone, this donor adds a single thio-sugar onto the termini of nascent chains. Surprisingly, in chain co-polymerization reactions with a second donor, this thiol-terminated heparosan also serves as an acceptor to form an unnatural thio-glycosidic bond (‘
S
-link’) between sugar residues in place of a natural ‘
O
-linked’ bond.
S
-linked heparan sulfate analogs are not cleaved by human heparanase. Furthermore, the analogs act as competitive inhibitors with > ~200-fold higher potency than expected; as a rationale, molecular dynamic simulations suggest that the
S
-link polymer conformations mimic aspects of the transition state. Our analogs form the basis for future cancer therapeutics and modulators of protein/sugar interactions.
Heparin is a family of complex carbohydrates binding to proteins to modulate cell activities. Here the authors report the synthesis, and conformations simulations of
S
-linked hemi-A heparosan [GlcA-S-GlcNAc]
n
, a thio-glycosidic uncleavable polysaccharide, and test it as human heparanase inhibitor. |
doi_str_mv | 10.1038/s41467-022-34788-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ef461400591343048c9e59e0041eaaf1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ef461400591343048c9e59e0041eaaf1</doaj_id><sourcerecordid>2745195902</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-de5ba722f712816218e9f9353daf7d7fb0d4b2b3379d66f564ffe6836651d9a03</originalsourceid><addsrcrecordid>eNp9kctu1TAQhiMEolXpC7BAkVgHfL9skNARl0qVEBKsLScen_iQ2Ac7QTo8PW5TSrvBG1_mn29m_DfNS4zeYETV28IwE7JDhHSUSaU6-qQ5J4jhDktCnz44nzWXpRxQXVRjxdjz5owKJpCQ6Lz5uhthThB_n2a7hKEtp7iMUEJpk2_LOvk1d1OIP8DV297m9pim0wy5tLa0IxxtttEWaEMcQx-WlMuL5pm3U4HLu_2i-f7xw7fd5-76y6er3fvrbuAMLZ0D3ltJiJeYKCwIVqC9ppw666WTvkeO9aSnVGonhOeCeQ9CUSE4dtoietFcbVyX7MEcc5htPplkg7l9SHlvbK4jTWDAM4EZQlxjyihiatDANaD6Q2Ctx5X1bmMd134GN0Bcsp0eQR9HYhjNPv0yWmIlxU0zr-8AOf1coSzmkNYc6_yGSMax5hqRqiKbasiplAz-vgJG5sZVs7lqqqvm1lVDa9Krh73dp_z1sAroJig1FPeQ_9X-D_YPzYWuFg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2745195902</pqid></control><display><type>article</type><title>Chemoenzymatic synthesis of sulfur-linked sugar polymers as heparanase inhibitors</title><source>Open Access: PubMed Central</source><source>Nature</source><source>Publicly Available Content (ProQuest)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>He, Peng ; Zhang, Xing ; Xia, Ke ; Green, Dixy E. ; Baytas, Sultan ; Xu, Yongmei ; Pham, Truong ; Liu, Jian ; Zhang, Fuming ; Almond, Andrew ; Linhardt, Robert J. ; DeAngelis, Paul L.</creator><creatorcontrib>He, Peng ; Zhang, Xing ; Xia, Ke ; Green, Dixy E. ; Baytas, Sultan ; Xu, Yongmei ; Pham, Truong ; Liu, Jian ; Zhang, Fuming ; Almond, Andrew ; Linhardt, Robert J. ; DeAngelis, Paul L.</creatorcontrib><description>Complex carbohydrates (glycans) are major players in all organisms due to their structural, energy, and communication roles. This last essential role involves interacting and/or signaling through a plethora of glycan-binding proteins. The design and synthesis of glycans as potential drug candidates that selectively alter or perturb metabolic processes is challenging. Here we describe the first reported sulfur-linked polysaccharides with potentially altered conformational state(s) that are recalcitrant to digestion by heparanase, an enzyme important in human health and disease. An artificial sugar donor with a sulfhydryl functionality is synthesized and enzymatically incorporated into polysaccharide chains utilizing heparosan synthase. Used alone, this donor adds a single thio-sugar onto the termini of nascent chains. Surprisingly, in chain co-polymerization reactions with a second donor, this thiol-terminated heparosan also serves as an acceptor to form an unnatural thio-glycosidic bond (‘
S
-link’) between sugar residues in place of a natural ‘
O
-linked’ bond.
S
-linked heparan sulfate analogs are not cleaved by human heparanase. Furthermore, the analogs act as competitive inhibitors with > ~200-fold higher potency than expected; as a rationale, molecular dynamic simulations suggest that the
S
-link polymer conformations mimic aspects of the transition state. Our analogs form the basis for future cancer therapeutics and modulators of protein/sugar interactions.
Heparin is a family of complex carbohydrates binding to proteins to modulate cell activities. Here the authors report the synthesis, and conformations simulations of
S
-linked hemi-A heparosan [GlcA-S-GlcNAc]
n
, a thio-glycosidic uncleavable polysaccharide, and test it as human heparanase inhibitor.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-022-34788-3</identifier><identifier>PMID: 36460670</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/45/221 ; 631/45/535/878/1263 ; 631/61 ; 639/638/309/2420 ; 639/638/92/72/1205 ; Analogs ; Binding ; Carbohydrates ; Chemical synthesis ; Copolymerization ; Drug development ; Glucuronidase ; Glycan ; Heparan sulfate ; Heparin ; Humanities and Social Sciences ; Humans ; Inhibitors ; Modulators ; Molecular dynamics ; multidisciplinary ; Polymers ; Polysaccharides ; Proteins ; Saccharides ; Science ; Science (multidisciplinary) ; Sugar ; Sugars ; Sulfhydryl Compounds ; Sulfur</subject><ispartof>Nature communications, 2022-12, Vol.13 (1), p.7438-12, Article 7438</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-de5ba722f712816218e9f9353daf7d7fb0d4b2b3379d66f564ffe6836651d9a03</citedby><cites>FETCH-LOGICAL-c540t-de5ba722f712816218e9f9353daf7d7fb0d4b2b3379d66f564ffe6836651d9a03</cites><orcidid>0000-0002-9929-6467 ; 0000-0003-2219-5833 ; 0000-0002-7549-1890 ; 0000-0002-6237-0889 ; 0000-0001-7471-6333 ; 0000-0002-2699-3448 ; 0000-0002-8843-1344 ; 0000-0003-2803-3704 ; 0000-0001-9699-9901 ; 0000-0002-2308-5196</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2745195902/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2745195902?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36460670$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>He, Peng</creatorcontrib><creatorcontrib>Zhang, Xing</creatorcontrib><creatorcontrib>Xia, Ke</creatorcontrib><creatorcontrib>Green, Dixy E.</creatorcontrib><creatorcontrib>Baytas, Sultan</creatorcontrib><creatorcontrib>Xu, Yongmei</creatorcontrib><creatorcontrib>Pham, Truong</creatorcontrib><creatorcontrib>Liu, Jian</creatorcontrib><creatorcontrib>Zhang, Fuming</creatorcontrib><creatorcontrib>Almond, Andrew</creatorcontrib><creatorcontrib>Linhardt, Robert J.</creatorcontrib><creatorcontrib>DeAngelis, Paul L.</creatorcontrib><title>Chemoenzymatic synthesis of sulfur-linked sugar polymers as heparanase inhibitors</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Complex carbohydrates (glycans) are major players in all organisms due to their structural, energy, and communication roles. This last essential role involves interacting and/or signaling through a plethora of glycan-binding proteins. The design and synthesis of glycans as potential drug candidates that selectively alter or perturb metabolic processes is challenging. Here we describe the first reported sulfur-linked polysaccharides with potentially altered conformational state(s) that are recalcitrant to digestion by heparanase, an enzyme important in human health and disease. An artificial sugar donor with a sulfhydryl functionality is synthesized and enzymatically incorporated into polysaccharide chains utilizing heparosan synthase. Used alone, this donor adds a single thio-sugar onto the termini of nascent chains. Surprisingly, in chain co-polymerization reactions with a second donor, this thiol-terminated heparosan also serves as an acceptor to form an unnatural thio-glycosidic bond (‘
S
-link’) between sugar residues in place of a natural ‘
O
-linked’ bond.
S
-linked heparan sulfate analogs are not cleaved by human heparanase. Furthermore, the analogs act as competitive inhibitors with > ~200-fold higher potency than expected; as a rationale, molecular dynamic simulations suggest that the
S
-link polymer conformations mimic aspects of the transition state. Our analogs form the basis for future cancer therapeutics and modulators of protein/sugar interactions.
Heparin is a family of complex carbohydrates binding to proteins to modulate cell activities. Here the authors report the synthesis, and conformations simulations of
S
-linked hemi-A heparosan [GlcA-S-GlcNAc]
n
, a thio-glycosidic uncleavable polysaccharide, and test it as human heparanase inhibitor.</description><subject>631/45/221</subject><subject>631/45/535/878/1263</subject><subject>631/61</subject><subject>639/638/309/2420</subject><subject>639/638/92/72/1205</subject><subject>Analogs</subject><subject>Binding</subject><subject>Carbohydrates</subject><subject>Chemical synthesis</subject><subject>Copolymerization</subject><subject>Drug development</subject><subject>Glucuronidase</subject><subject>Glycan</subject><subject>Heparan sulfate</subject><subject>Heparin</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Inhibitors</subject><subject>Modulators</subject><subject>Molecular dynamics</subject><subject>multidisciplinary</subject><subject>Polymers</subject><subject>Polysaccharides</subject><subject>Proteins</subject><subject>Saccharides</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sugar</subject><subject>Sugars</subject><subject>Sulfhydryl Compounds</subject><subject>Sulfur</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kctu1TAQhiMEolXpC7BAkVgHfL9skNARl0qVEBKsLScen_iQ2Ac7QTo8PW5TSrvBG1_mn29m_DfNS4zeYETV28IwE7JDhHSUSaU6-qQ5J4jhDktCnz44nzWXpRxQXVRjxdjz5owKJpCQ6Lz5uhthThB_n2a7hKEtp7iMUEJpk2_LOvk1d1OIP8DV297m9pim0wy5tLa0IxxtttEWaEMcQx-WlMuL5pm3U4HLu_2i-f7xw7fd5-76y6er3fvrbuAMLZ0D3ltJiJeYKCwIVqC9ppw666WTvkeO9aSnVGonhOeCeQ9CUSE4dtoietFcbVyX7MEcc5htPplkg7l9SHlvbK4jTWDAM4EZQlxjyihiatDANaD6Q2Ctx5X1bmMd134GN0Bcsp0eQR9HYhjNPv0yWmIlxU0zr-8AOf1coSzmkNYc6_yGSMax5hqRqiKbasiplAz-vgJG5sZVs7lqqqvm1lVDa9Krh73dp_z1sAroJig1FPeQ_9X-D_YPzYWuFg</recordid><startdate>20221202</startdate><enddate>20221202</enddate><creator>He, Peng</creator><creator>Zhang, Xing</creator><creator>Xia, Ke</creator><creator>Green, Dixy E.</creator><creator>Baytas, Sultan</creator><creator>Xu, Yongmei</creator><creator>Pham, Truong</creator><creator>Liu, Jian</creator><creator>Zhang, Fuming</creator><creator>Almond, Andrew</creator><creator>Linhardt, Robert J.</creator><creator>DeAngelis, Paul L.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9929-6467</orcidid><orcidid>https://orcid.org/0000-0003-2219-5833</orcidid><orcidid>https://orcid.org/0000-0002-7549-1890</orcidid><orcidid>https://orcid.org/0000-0002-6237-0889</orcidid><orcidid>https://orcid.org/0000-0001-7471-6333</orcidid><orcidid>https://orcid.org/0000-0002-2699-3448</orcidid><orcidid>https://orcid.org/0000-0002-8843-1344</orcidid><orcidid>https://orcid.org/0000-0003-2803-3704</orcidid><orcidid>https://orcid.org/0000-0001-9699-9901</orcidid><orcidid>https://orcid.org/0000-0002-2308-5196</orcidid></search><sort><creationdate>20221202</creationdate><title>Chemoenzymatic synthesis of sulfur-linked sugar polymers as heparanase inhibitors</title><author>He, Peng ; Zhang, Xing ; Xia, Ke ; Green, Dixy E. ; Baytas, Sultan ; Xu, Yongmei ; Pham, Truong ; Liu, Jian ; Zhang, Fuming ; Almond, Andrew ; Linhardt, Robert J. ; DeAngelis, Paul L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-de5ba722f712816218e9f9353daf7d7fb0d4b2b3379d66f564ffe6836651d9a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>631/45/221</topic><topic>631/45/535/878/1263</topic><topic>631/61</topic><topic>639/638/309/2420</topic><topic>639/638/92/72/1205</topic><topic>Analogs</topic><topic>Binding</topic><topic>Carbohydrates</topic><topic>Chemical synthesis</topic><topic>Copolymerization</topic><topic>Drug development</topic><topic>Glucuronidase</topic><topic>Glycan</topic><topic>Heparan sulfate</topic><topic>Heparin</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Inhibitors</topic><topic>Modulators</topic><topic>Molecular dynamics</topic><topic>multidisciplinary</topic><topic>Polymers</topic><topic>Polysaccharides</topic><topic>Proteins</topic><topic>Saccharides</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sugar</topic><topic>Sugars</topic><topic>Sulfhydryl Compounds</topic><topic>Sulfur</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Peng</creatorcontrib><creatorcontrib>Zhang, Xing</creatorcontrib><creatorcontrib>Xia, Ke</creatorcontrib><creatorcontrib>Green, Dixy E.</creatorcontrib><creatorcontrib>Baytas, Sultan</creatorcontrib><creatorcontrib>Xu, Yongmei</creatorcontrib><creatorcontrib>Pham, Truong</creatorcontrib><creatorcontrib>Liu, Jian</creatorcontrib><creatorcontrib>Zhang, Fuming</creatorcontrib><creatorcontrib>Almond, Andrew</creatorcontrib><creatorcontrib>Linhardt, Robert J.</creatorcontrib><creatorcontrib>DeAngelis, Paul L.</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest - Health & Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Peng</au><au>Zhang, Xing</au><au>Xia, Ke</au><au>Green, Dixy E.</au><au>Baytas, Sultan</au><au>Xu, Yongmei</au><au>Pham, Truong</au><au>Liu, Jian</au><au>Zhang, Fuming</au><au>Almond, Andrew</au><au>Linhardt, Robert J.</au><au>DeAngelis, Paul L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemoenzymatic synthesis of sulfur-linked sugar polymers as heparanase inhibitors</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2022-12-02</date><risdate>2022</risdate><volume>13</volume><issue>1</issue><spage>7438</spage><epage>12</epage><pages>7438-12</pages><artnum>7438</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Complex carbohydrates (glycans) are major players in all organisms due to their structural, energy, and communication roles. This last essential role involves interacting and/or signaling through a plethora of glycan-binding proteins. The design and synthesis of glycans as potential drug candidates that selectively alter or perturb metabolic processes is challenging. Here we describe the first reported sulfur-linked polysaccharides with potentially altered conformational state(s) that are recalcitrant to digestion by heparanase, an enzyme important in human health and disease. An artificial sugar donor with a sulfhydryl functionality is synthesized and enzymatically incorporated into polysaccharide chains utilizing heparosan synthase. Used alone, this donor adds a single thio-sugar onto the termini of nascent chains. Surprisingly, in chain co-polymerization reactions with a second donor, this thiol-terminated heparosan also serves as an acceptor to form an unnatural thio-glycosidic bond (‘
S
-link’) between sugar residues in place of a natural ‘
O
-linked’ bond.
S
-linked heparan sulfate analogs are not cleaved by human heparanase. Furthermore, the analogs act as competitive inhibitors with > ~200-fold higher potency than expected; as a rationale, molecular dynamic simulations suggest that the
S
-link polymer conformations mimic aspects of the transition state. Our analogs form the basis for future cancer therapeutics and modulators of protein/sugar interactions.
Heparin is a family of complex carbohydrates binding to proteins to modulate cell activities. Here the authors report the synthesis, and conformations simulations of
S
-linked hemi-A heparosan [GlcA-S-GlcNAc]
n
, a thio-glycosidic uncleavable polysaccharide, and test it as human heparanase inhibitor.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36460670</pmid><doi>10.1038/s41467-022-34788-3</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9929-6467</orcidid><orcidid>https://orcid.org/0000-0003-2219-5833</orcidid><orcidid>https://orcid.org/0000-0002-7549-1890</orcidid><orcidid>https://orcid.org/0000-0002-6237-0889</orcidid><orcidid>https://orcid.org/0000-0001-7471-6333</orcidid><orcidid>https://orcid.org/0000-0002-2699-3448</orcidid><orcidid>https://orcid.org/0000-0002-8843-1344</orcidid><orcidid>https://orcid.org/0000-0003-2803-3704</orcidid><orcidid>https://orcid.org/0000-0001-9699-9901</orcidid><orcidid>https://orcid.org/0000-0002-2308-5196</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2022-12, Vol.13 (1), p.7438-12, Article 7438 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ef461400591343048c9e59e0041eaaf1 |
source | Open Access: PubMed Central; Nature; Publicly Available Content (ProQuest); Springer Nature - nature.com Journals - Fully Open Access |
subjects | 631/45/221 631/45/535/878/1263 631/61 639/638/309/2420 639/638/92/72/1205 Analogs Binding Carbohydrates Chemical synthesis Copolymerization Drug development Glucuronidase Glycan Heparan sulfate Heparin Humanities and Social Sciences Humans Inhibitors Modulators Molecular dynamics multidisciplinary Polymers Polysaccharides Proteins Saccharides Science Science (multidisciplinary) Sugar Sugars Sulfhydryl Compounds Sulfur |
title | Chemoenzymatic synthesis of sulfur-linked sugar polymers as heparanase inhibitors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A40%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemoenzymatic%20synthesis%20of%20sulfur-linked%20sugar%20polymers%20as%20heparanase%20inhibitors&rft.jtitle=Nature%20communications&rft.au=He,%20Peng&rft.date=2022-12-02&rft.volume=13&rft.issue=1&rft.spage=7438&rft.epage=12&rft.pages=7438-12&rft.artnum=7438&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-022-34788-3&rft_dat=%3Cproquest_doaj_%3E2745195902%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-de5ba722f712816218e9f9353daf7d7fb0d4b2b3379d66f564ffe6836651d9a03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2745195902&rft_id=info:pmid/36460670&rfr_iscdi=true |