Loading…

Effects of the Queue Discipline on System Performance

Queue systems are essential in the modelling of transport systems. Increasing requirements from the beneficiaries of logistic services have led to a broadening of offerings. Consequently, models need to consider transport entities with priorities being assigned in relation to the costs corresponding...

Full description

Saved in:
Bibliographic Details
Published in:AppliedMath 2023-03, Vol.3 (1), p.37-48
Main Authors: Raicu, Serban, Costescu, Dorinela, Popa, Mihaela
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Queue systems are essential in the modelling of transport systems. Increasing requirements from the beneficiaries of logistic services have led to a broadening of offerings. Consequently, models need to consider transport entities with priorities being assigned in relation to the costs corresponding to different classes of customers and/or processes. Waiting lines and queue disciplines substantially affect queue system performance. This paper aims to identify a solution for decreasing the waiting time, the total time in the system, and, overall, the cost linked to queueing delays. The influence of queue discipline on the waiting time and the total time in the system is analysed for several cases: (i) service for priority classes at the same rate of service with and without interruptions, and (ii) service for several priority classes with different service rates. The presented analysis is appropriate for increasing the performance of services dedicated to freight for two priority classes. It demonstrates how priority service can increase system performance by reducing the time in the system for customers with high costs. In addition, in the considered settings, the total time in the system is reduced for all customers, which leads to resource savings for system infrastructures.
ISSN:2673-9909
2673-9909
DOI:10.3390/appliedmath3010003