Loading…
Disentanglement of Surface and Confinement Effects for Diene Metathesis in Mesoporous Confinement
We study the effects of a planar interface and confinement on a generic catalytically activated ring-closing polymerization reaction near an unstructured catalyst. For this, we employ a coarse-grained polymer model using grand-canonical molecular dynamics simulations with a Monte Carlo reaction sche...
Saved in:
Published in: | ACS omega 2024-01, Vol.9 (1), p.598-606 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study the effects of a planar interface and confinement on a generic catalytically activated ring-closing polymerization reaction near an unstructured catalyst. For this, we employ a coarse-grained polymer model using grand-canonical molecular dynamics simulations with a Monte Carlo reaction scheme. Inspired by recent experiments in the group of M. Buchmeiser that demonstrated an increase in ring-closing selectivity under confinement, we show that both the interface effects, i.e., placing the catalyst near a planar wall, and the confinement effects, i.e., locating the catalyst within a pore, lead to an increase of selectivity. We furthermore demonstrate that curvature effects for cylindrical mesopores (2 nm < d < 12.3 nm) influence the distribution of the chain ends, leading to a further increase in selectivity. This leads us to speculate that specially corrugated surfaces might also help to enhance catalytically activated polymerization processes. |
---|---|
ISSN: | 2470-1343 2470-1343 |
DOI: | 10.1021/acsomega.3c06195 |