Loading…
Movement Intent Detection for Upper-Limb Rehabilitation Exoskeleton Based on Series Elastic Actuator as Force Sensor
In this paper, serial elastic actuators (SEAs) in conjunction with an accelerometer are proposed as force sensors to detect the intention of movement, and the SEA is proposed as a gentle actuator of a patient’s upper-limb exoskeleton. A smooth trajectory is proposed to provide comfortable performanc...
Saved in:
Published in: | Actuators 2024-08, Vol.13 (8), p.284 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, serial elastic actuators (SEAs) in conjunction with an accelerometer are proposed as force sensors to detect the intention of movement, and the SEA is proposed as a gentle actuator of a patient’s upper-limb exoskeleton. A smooth trajectory is proposed to provide comfortable performance. There is an offset trajectory between the link and the motor, which increases safety by preventing sudden movements, and the offset is equivalent to the torsional elastic spring constant. The proposed control law is based on a backstepping approach tested in real-time experiments with robust results in a 2-DoF upper-limb rehabilitation exoskeleton. The experimental results showed a sensitivity of 100% and a positive predictive value of 97.5% for movement intention detection. |
---|---|
ISSN: | 2076-0825 2076-0825 |
DOI: | 10.3390/act13080284 |