Loading…
Changes in rat spatial learning and memory as well as serum exosome proteins after simultaneous exposure to 1.5 GHz and 4.3 GHz microwaves
This study aimed to elucidate the effects and biological targets sensitive to simultaneous 1.5 and 4.3 GHz microwave exposure in rats. A total of 120 male Wistar rats were divided randomly into four groups: the sham (S group), 1.5 GHz microwave exposure (L group), 4.3 GHz microwave exposure (C group...
Saved in:
Published in: | Ecotoxicology and environmental safety 2022-09, Vol.243, p.113983, Article 113983 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study aimed to elucidate the effects and biological targets sensitive to simultaneous 1.5 and 4.3 GHz microwave exposure in rats. A total of 120 male Wistar rats were divided randomly into four groups: the sham (S group), 1.5 GHz microwave exposure (L group), 4.3 GHz microwave exposure (C group) and simultaneous 1.5 and 4.3 GHz microwave exposure (LC group) groups. Spatial learning and memory, cortical electrical activity, and hippocampal ultrastructure were assessed by the Morris Water Maze, electroencephalography, and transmission electron microscopy, respectively. Additionally, serum exosomes were isolated by ultracentrifugation and assessed by Western blotting, nanoparticle tracking and transmission electron microscopy. The serum exosome protein content was assessed by label-free quantitative proteomics. Impaired spatial learning and memory decreased cortical excitability, and damage to the hippocampal ultrastructure were observed in groups exposed to microwaves, especially the L and LC groups. A total of 54, 145 and 296 exosomal proteins were differentially expressed between the S group and the L, C and LC groups, respectively. These differentially expressed proteins were involved in the synaptic vesicle cycle and SNARE interactions during vesicular transport. Additionally, VAMP8, Syn7 and VMAT are potential serum markers of simultaneous microwave exposure. Thus, exposure to 1.5 and 4.3 GHz microwaves induced impairments in spatial learning and memory, and simultaneous microwave exposure had the most severe effects.
•A microwave source with simultaneous exposure of 1.5 GHz and 4.3 GHz was constructed.•The simultaneous microwave could induced early impairments spatial learning and memory abilities and hippocampal structure.•VAMP8, Syn7, VMAT might be key molecules in serum exosomes for microwave exposure. |
---|---|
ISSN: | 0147-6513 1090-2414 |
DOI: | 10.1016/j.ecoenv.2022.113983 |