Loading…

Aberration correction in 3D transthoracic echocardiography

Three-dimensional cardiac imaging has been available in the clinic for more than two decades. Continuous improvement in image quality has occurred in this period due to the development of probe technology and beamforming techniques. The purpose of this article is to quantitatively and qualitatively...

Full description

Saved in:
Bibliographic Details
Published in:WFUMB Ultrasound Open 2024-12, Vol.2 (2), p.100062, Article 100062
Main Authors: Måsøy, Svein-Erik, Dénarié, Bastien, Sørnes, Anders, Holte, Espen, Grenne, Bjørnar, Espeland, Torvald, Berg, Erik Andreas Rye, Rindal, Ole Marius Hoel, Rigby, Wayne, Bjåstad, Tore
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2122-16fa7204a9604cf44179095a9072c6806b21ccc9986c0e22c5d6c2ceb6b06a523
container_end_page
container_issue 2
container_start_page 100062
container_title WFUMB Ultrasound Open
container_volume 2
creator Måsøy, Svein-Erik
Dénarié, Bastien
Sørnes, Anders
Holte, Espen
Grenne, Bjørnar
Espeland, Torvald
Berg, Erik Andreas Rye
Rindal, Ole Marius Hoel
Rigby, Wayne
Bjåstad, Tore
description Three-dimensional cardiac imaging has been available in the clinic for more than two decades. Continuous improvement in image quality has occurred in this period due to the development of probe technology and beamforming techniques. The purpose of this article is to quantitatively and qualitatively analyze the effect of a commercially available aberration correction algorithm on clinically acquired 3D transthoracic echocardiography (3D TTE) images. Clinical triplane and 3D volume cineloops of at least one cardiac cycle of pre-beamformed channel data were captured from 50 patients using a GE HealthCare Vivid E95 system with the 4Vc-D matrix array probe. This resulted in a total of 3200 vol and 3136 triplane frames. The data were post-processed with and without aberration correction. Quantitatively, assessed by an image quality parameter based on coherence, all recordings were improved by aberration correction compared to those without aberration correction. Triplane data obtained a larger improvement in image quality than volume data. Qualitatively, as demonstrated by case examples, aberration-corrected images appear sharper, have a brighter tissue signal compared to the cavity, and provide better delineation of cardiac structures. 3D rendering of valves can also be significantly improved. In general, aberration correction provides a systematic improvement in clinical cardiac triplane and 3D volume images.
doi_str_mv 10.1016/j.wfumbo.2024.100062
format article
fullrecord <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_efce5cb0c1b04fefa3f55ba1fef73090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2949668324000302</els_id><doaj_id>oai_doaj_org_article_efce5cb0c1b04fefa3f55ba1fef73090</doaj_id><sourcerecordid>S2949668324000302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2122-16fa7204a9604cf44179095a9072c6806b21ccc9986c0e22c5d6c2ceb6b06a523</originalsourceid><addsrcrecordid>eNp9kM9KAzEQh4MoWGrfwMO-wNZJNpttPAil_isUvOg5TGaTNku7Kdmq9O3duiKePM2PYeZj5mPsmsOUA1c3zfTTv-9snAoQsm8BKHHGRkJLnSs1K87_5Es26bqmHxFac8XViN3OrUsJDyG2GcWUHH3H0GbFfXZI2HaHTUxIgTJHm0iY6hDXCfeb4xW78Ljt3OSnjtnb48Pr4jlfvTwtF_NVToILkXPlsRIgUSuQ5KXklQZdooZKkJqBsoITkdYzReCEoLJWJMhZZUFhKYoxWw7cOmJj9insMB1NxGC-GzGtDaZDoK0zzpMryQJxC9I7j4UvS4u8j1UBGnqWHFiUYtcl5395HMxJp2nMoNOcdJpBZ792N6y5_s-P4JLpKLiWXB1OxvpDwv-ALznaf50</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Aberration correction in 3D transthoracic echocardiography</title><source>ScienceDirect Journals</source><creator>Måsøy, Svein-Erik ; Dénarié, Bastien ; Sørnes, Anders ; Holte, Espen ; Grenne, Bjørnar ; Espeland, Torvald ; Berg, Erik Andreas Rye ; Rindal, Ole Marius Hoel ; Rigby, Wayne ; Bjåstad, Tore</creator><creatorcontrib>Måsøy, Svein-Erik ; Dénarié, Bastien ; Sørnes, Anders ; Holte, Espen ; Grenne, Bjørnar ; Espeland, Torvald ; Berg, Erik Andreas Rye ; Rindal, Ole Marius Hoel ; Rigby, Wayne ; Bjåstad, Tore</creatorcontrib><description>Three-dimensional cardiac imaging has been available in the clinic for more than two decades. Continuous improvement in image quality has occurred in this period due to the development of probe technology and beamforming techniques. The purpose of this article is to quantitatively and qualitatively analyze the effect of a commercially available aberration correction algorithm on clinically acquired 3D transthoracic echocardiography (3D TTE) images. Clinical triplane and 3D volume cineloops of at least one cardiac cycle of pre-beamformed channel data were captured from 50 patients using a GE HealthCare Vivid E95 system with the 4Vc-D matrix array probe. This resulted in a total of 3200 vol and 3136 triplane frames. The data were post-processed with and without aberration correction. Quantitatively, assessed by an image quality parameter based on coherence, all recordings were improved by aberration correction compared to those without aberration correction. Triplane data obtained a larger improvement in image quality than volume data. Qualitatively, as demonstrated by case examples, aberration-corrected images appear sharper, have a brighter tissue signal compared to the cavity, and provide better delineation of cardiac structures. 3D rendering of valves can also be significantly improved. In general, aberration correction provides a systematic improvement in clinical cardiac triplane and 3D volume images.</description><identifier>ISSN: 2949-6683</identifier><identifier>EISSN: 2949-6683</identifier><identifier>DOI: 10.1016/j.wfumbo.2024.100062</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Aberration correction ; Echocardiography</subject><ispartof>WFUMB Ultrasound Open, 2024-12, Vol.2 (2), p.100062, Article 100062</ispartof><rights>2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2122-16fa7204a9604cf44179095a9072c6806b21ccc9986c0e22c5d6c2ceb6b06a523</cites><orcidid>0000-0002-8891-1372 ; 0009-0006-1270-4998 ; 0000-0002-6808-5624 ; 0000-0001-9065-622X ; 0000-0002-9243-0176</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2949668324000302$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27901,27902,45756</link.rule.ids></links><search><creatorcontrib>Måsøy, Svein-Erik</creatorcontrib><creatorcontrib>Dénarié, Bastien</creatorcontrib><creatorcontrib>Sørnes, Anders</creatorcontrib><creatorcontrib>Holte, Espen</creatorcontrib><creatorcontrib>Grenne, Bjørnar</creatorcontrib><creatorcontrib>Espeland, Torvald</creatorcontrib><creatorcontrib>Berg, Erik Andreas Rye</creatorcontrib><creatorcontrib>Rindal, Ole Marius Hoel</creatorcontrib><creatorcontrib>Rigby, Wayne</creatorcontrib><creatorcontrib>Bjåstad, Tore</creatorcontrib><title>Aberration correction in 3D transthoracic echocardiography</title><title>WFUMB Ultrasound Open</title><description>Three-dimensional cardiac imaging has been available in the clinic for more than two decades. Continuous improvement in image quality has occurred in this period due to the development of probe technology and beamforming techniques. The purpose of this article is to quantitatively and qualitatively analyze the effect of a commercially available aberration correction algorithm on clinically acquired 3D transthoracic echocardiography (3D TTE) images. Clinical triplane and 3D volume cineloops of at least one cardiac cycle of pre-beamformed channel data were captured from 50 patients using a GE HealthCare Vivid E95 system with the 4Vc-D matrix array probe. This resulted in a total of 3200 vol and 3136 triplane frames. The data were post-processed with and without aberration correction. Quantitatively, assessed by an image quality parameter based on coherence, all recordings were improved by aberration correction compared to those without aberration correction. Triplane data obtained a larger improvement in image quality than volume data. Qualitatively, as demonstrated by case examples, aberration-corrected images appear sharper, have a brighter tissue signal compared to the cavity, and provide better delineation of cardiac structures. 3D rendering of valves can also be significantly improved. In general, aberration correction provides a systematic improvement in clinical cardiac triplane and 3D volume images.</description><subject>Aberration correction</subject><subject>Echocardiography</subject><issn>2949-6683</issn><issn>2949-6683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kM9KAzEQh4MoWGrfwMO-wNZJNpttPAil_isUvOg5TGaTNku7Kdmq9O3duiKePM2PYeZj5mPsmsOUA1c3zfTTv-9snAoQsm8BKHHGRkJLnSs1K87_5Es26bqmHxFac8XViN3OrUsJDyG2GcWUHH3H0GbFfXZI2HaHTUxIgTJHm0iY6hDXCfeb4xW78Ljt3OSnjtnb48Pr4jlfvTwtF_NVToILkXPlsRIgUSuQ5KXklQZdooZKkJqBsoITkdYzReCEoLJWJMhZZUFhKYoxWw7cOmJj9insMB1NxGC-GzGtDaZDoK0zzpMryQJxC9I7j4UvS4u8j1UBGnqWHFiUYtcl5395HMxJp2nMoNOcdJpBZ792N6y5_s-P4JLpKLiWXB1OxvpDwv-ALznaf50</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Måsøy, Svein-Erik</creator><creator>Dénarié, Bastien</creator><creator>Sørnes, Anders</creator><creator>Holte, Espen</creator><creator>Grenne, Bjørnar</creator><creator>Espeland, Torvald</creator><creator>Berg, Erik Andreas Rye</creator><creator>Rindal, Ole Marius Hoel</creator><creator>Rigby, Wayne</creator><creator>Bjåstad, Tore</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8891-1372</orcidid><orcidid>https://orcid.org/0009-0006-1270-4998</orcidid><orcidid>https://orcid.org/0000-0002-6808-5624</orcidid><orcidid>https://orcid.org/0000-0001-9065-622X</orcidid><orcidid>https://orcid.org/0000-0002-9243-0176</orcidid></search><sort><creationdate>202412</creationdate><title>Aberration correction in 3D transthoracic echocardiography</title><author>Måsøy, Svein-Erik ; Dénarié, Bastien ; Sørnes, Anders ; Holte, Espen ; Grenne, Bjørnar ; Espeland, Torvald ; Berg, Erik Andreas Rye ; Rindal, Ole Marius Hoel ; Rigby, Wayne ; Bjåstad, Tore</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2122-16fa7204a9604cf44179095a9072c6806b21ccc9986c0e22c5d6c2ceb6b06a523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aberration correction</topic><topic>Echocardiography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Måsøy, Svein-Erik</creatorcontrib><creatorcontrib>Dénarié, Bastien</creatorcontrib><creatorcontrib>Sørnes, Anders</creatorcontrib><creatorcontrib>Holte, Espen</creatorcontrib><creatorcontrib>Grenne, Bjørnar</creatorcontrib><creatorcontrib>Espeland, Torvald</creatorcontrib><creatorcontrib>Berg, Erik Andreas Rye</creatorcontrib><creatorcontrib>Rindal, Ole Marius Hoel</creatorcontrib><creatorcontrib>Rigby, Wayne</creatorcontrib><creatorcontrib>Bjåstad, Tore</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>WFUMB Ultrasound Open</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Måsøy, Svein-Erik</au><au>Dénarié, Bastien</au><au>Sørnes, Anders</au><au>Holte, Espen</au><au>Grenne, Bjørnar</au><au>Espeland, Torvald</au><au>Berg, Erik Andreas Rye</au><au>Rindal, Ole Marius Hoel</au><au>Rigby, Wayne</au><au>Bjåstad, Tore</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aberration correction in 3D transthoracic echocardiography</atitle><jtitle>WFUMB Ultrasound Open</jtitle><date>2024-12</date><risdate>2024</risdate><volume>2</volume><issue>2</issue><spage>100062</spage><pages>100062-</pages><artnum>100062</artnum><issn>2949-6683</issn><eissn>2949-6683</eissn><abstract>Three-dimensional cardiac imaging has been available in the clinic for more than two decades. Continuous improvement in image quality has occurred in this period due to the development of probe technology and beamforming techniques. The purpose of this article is to quantitatively and qualitatively analyze the effect of a commercially available aberration correction algorithm on clinically acquired 3D transthoracic echocardiography (3D TTE) images. Clinical triplane and 3D volume cineloops of at least one cardiac cycle of pre-beamformed channel data were captured from 50 patients using a GE HealthCare Vivid E95 system with the 4Vc-D matrix array probe. This resulted in a total of 3200 vol and 3136 triplane frames. The data were post-processed with and without aberration correction. Quantitatively, assessed by an image quality parameter based on coherence, all recordings were improved by aberration correction compared to those without aberration correction. Triplane data obtained a larger improvement in image quality than volume data. Qualitatively, as demonstrated by case examples, aberration-corrected images appear sharper, have a brighter tissue signal compared to the cavity, and provide better delineation of cardiac structures. 3D rendering of valves can also be significantly improved. In general, aberration correction provides a systematic improvement in clinical cardiac triplane and 3D volume images.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.wfumbo.2024.100062</doi><orcidid>https://orcid.org/0000-0002-8891-1372</orcidid><orcidid>https://orcid.org/0009-0006-1270-4998</orcidid><orcidid>https://orcid.org/0000-0002-6808-5624</orcidid><orcidid>https://orcid.org/0000-0001-9065-622X</orcidid><orcidid>https://orcid.org/0000-0002-9243-0176</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2949-6683
ispartof WFUMB Ultrasound Open, 2024-12, Vol.2 (2), p.100062, Article 100062
issn 2949-6683
2949-6683
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_efce5cb0c1b04fefa3f55ba1fef73090
source ScienceDirect Journals
subjects Aberration correction
Echocardiography
title Aberration correction in 3D transthoracic echocardiography
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T12%3A38%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aberration%20correction%20in%203D%20transthoracic%20echocardiography&rft.jtitle=WFUMB%20Ultrasound%20Open&rft.au=M%C3%A5s%C3%B8y,%20Svein-Erik&rft.date=2024-12&rft.volume=2&rft.issue=2&rft.spage=100062&rft.pages=100062-&rft.artnum=100062&rft.issn=2949-6683&rft.eissn=2949-6683&rft_id=info:doi/10.1016/j.wfumbo.2024.100062&rft_dat=%3Celsevier_doaj_%3ES2949668324000302%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2122-16fa7204a9604cf44179095a9072c6806b21ccc9986c0e22c5d6c2ceb6b06a523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true