Loading…

Characterization of the radiative impact of aerosols on CO2 and energy fluxes in the Amazon deforestation arch using artificial neural networks

In vegetation canopies with complex architectures, diffuse solar radiation can enhance carbon assimilation through photosynthesis because isotropic light is able to reach deeper layers of the canopy. Although this effect has been studied in the past decade, the mechanisms and impacts of this enhance...

Full description

Saved in:
Bibliographic Details
Published in:Atmospheric chemistry and physics 2020-03, Vol.20 (6), p.3439-3458
Main Authors: Braghiere, Renato Kerches, Marcia Akemi Yamasoe, Nilton Manuel Évora do Rosário, Humberto Ribeiro da Rocha, de Souza Nogueira, José, Alessandro Carioca de Araújo
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 3458
container_issue 6
container_start_page 3439
container_title Atmospheric chemistry and physics
container_volume 20
creator Braghiere, Renato Kerches
Marcia Akemi Yamasoe
Nilton Manuel Évora do Rosário
Humberto Ribeiro da Rocha
de Souza Nogueira, José
Alessandro Carioca de Araújo
description In vegetation canopies with complex architectures, diffuse solar radiation can enhance carbon assimilation through photosynthesis because isotropic light is able to reach deeper layers of the canopy. Although this effect has been studied in the past decade, the mechanisms and impacts of this enhancement over South America remain poorly understood. Over the Amazon deforestation arch large amounts of aerosols are released into the atmosphere due to biomass burning, which provides an ideal scenario for further investigation of this phenomenon in the presence of canopies with complex architecture. In this paper, the relation of aerosol optical depth and surface fluxes of mass and energy are evaluated over three study sites with artificial neural networks and radiative transfer modeling. Results indicate a significant effect of the aerosol on the flux of carbon dioxide between the vegetation and the atmosphere, as well as on energy exchange, including that surface fluxes are sensitive to second-order radiative impacts of aerosols on temperature, humidity, and friction velocity. CO2 exchanges increased in the presence of aerosol in up to 55 % in sites with complex canopy architecture. A decrease of approximately 12 % was observed for a site with shorter vegetation. Energy fluxes were negatively impacted by aerosols over all study sites.
doi_str_mv 10.5194/acp-20-3439-2020
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_effb99f55d6d4f75a3a2c61398bd7d84</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_effb99f55d6d4f75a3a2c61398bd7d84</doaj_id><sourcerecordid>2414221600</sourcerecordid><originalsourceid>FETCH-LOGICAL-d249t-d35cf7c7a040fcdf9e1e47048e46679f46658fd90155dc8aa2ce3915ffac2db13</originalsourceid><addsrcrecordid>eNo9j0lPwzAQhSMEEqVw52iJc8BbFh-riqVSpV7gHE3tceuSxsVOWPon-MuYFnGZN3p68-lNll0zelswJe9A73JOcyGFSsrpSTZiZU3zSnB5-r-z8jy7iHFDKS8ok6Pse7qGALrH4PbQO98Rb0m_RhLAuGS8I3HbXQr8-oDBR99GkmLTBSfQGYIdhtUXse3wiZG47nA82cI-ZQxaHzD2RzAEvSZDdN0qrb2zTjtoSYdDOEj_4cNrvMzOLLQRr_50nL083D9Pn_L54nE2ncxzw6XqcyMKbStdAZXUamMVMpQVlTXKsqyUTbOorVGUFYXRNQDXKBQrrAXNzZKJcTY7co2HTbMLbgvhq_HgmoPhw6r5LalbbNDapVI2gUojbVWASLSSCVUvTWVqmVg3R9Yu-Lch_dts_BC6VL_hkknOWUmp-AFGMYLt</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2414221600</pqid></control><display><type>article</type><title>Characterization of the radiative impact of aerosols on CO2 and energy fluxes in the Amazon deforestation arch using artificial neural networks</title><source>Publicly Available Content Database</source><source>DOAJ Directory of Open Access Journals</source><source>Alma/SFX Local Collection</source><creator>Braghiere, Renato Kerches ; Marcia Akemi Yamasoe ; Nilton Manuel Évora do Rosário ; Humberto Ribeiro da Rocha ; de Souza Nogueira, José ; Alessandro Carioca de Araújo</creator><creatorcontrib>Braghiere, Renato Kerches ; Marcia Akemi Yamasoe ; Nilton Manuel Évora do Rosário ; Humberto Ribeiro da Rocha ; de Souza Nogueira, José ; Alessandro Carioca de Araújo</creatorcontrib><description>In vegetation canopies with complex architectures, diffuse solar radiation can enhance carbon assimilation through photosynthesis because isotropic light is able to reach deeper layers of the canopy. Although this effect has been studied in the past decade, the mechanisms and impacts of this enhancement over South America remain poorly understood. Over the Amazon deforestation arch large amounts of aerosols are released into the atmosphere due to biomass burning, which provides an ideal scenario for further investigation of this phenomenon in the presence of canopies with complex architecture. In this paper, the relation of aerosol optical depth and surface fluxes of mass and energy are evaluated over three study sites with artificial neural networks and radiative transfer modeling. Results indicate a significant effect of the aerosol on the flux of carbon dioxide between the vegetation and the atmosphere, as well as on energy exchange, including that surface fluxes are sensitive to second-order radiative impacts of aerosols on temperature, humidity, and friction velocity. CO2 exchanges increased in the presence of aerosol in up to 55 % in sites with complex canopy architecture. A decrease of approximately 12 % was observed for a site with shorter vegetation. Energy fluxes were negatively impacted by aerosols over all study sites.</description><identifier>ISSN: 1680-7316</identifier><identifier>EISSN: 1680-7324</identifier><identifier>DOI: 10.5194/acp-20-3439-2020</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Aerosol effects ; Aerosol optical depth ; Aerosols ; Arches ; Architecture ; Artificial neural networks ; Atmosphere ; Atmospheric aerosols ; Atmospheric models ; Biogeochemistry ; Biomass burning ; Burning ; Canopies ; Canopy ; Carbon ; Carbon dioxide ; Carbon dioxide exchange ; Carbon fixation ; Deforestation ; Earth ; Ecosystems ; Energy ; Energy transfer ; Exchanging ; Fluxes ; Greenhouse gases ; Machine learning ; Neural networks ; Optical analysis ; Optical thickness ; Particle size ; Photosynthesis ; Principal components analysis ; Productivity ; Radiative transfer ; Solar radiation ; Surface fluxes ; Vegetation</subject><ispartof>Atmospheric chemistry and physics, 2020-03, Vol.20 (6), p.3439-3458</ispartof><rights>2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2414221600/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2414221600?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,25752,27923,27924,37011,44589,74897</link.rule.ids></links><search><creatorcontrib>Braghiere, Renato Kerches</creatorcontrib><creatorcontrib>Marcia Akemi Yamasoe</creatorcontrib><creatorcontrib>Nilton Manuel Évora do Rosário</creatorcontrib><creatorcontrib>Humberto Ribeiro da Rocha</creatorcontrib><creatorcontrib>de Souza Nogueira, José</creatorcontrib><creatorcontrib>Alessandro Carioca de Araújo</creatorcontrib><title>Characterization of the radiative impact of aerosols on CO2 and energy fluxes in the Amazon deforestation arch using artificial neural networks</title><title>Atmospheric chemistry and physics</title><description>In vegetation canopies with complex architectures, diffuse solar radiation can enhance carbon assimilation through photosynthesis because isotropic light is able to reach deeper layers of the canopy. Although this effect has been studied in the past decade, the mechanisms and impacts of this enhancement over South America remain poorly understood. Over the Amazon deforestation arch large amounts of aerosols are released into the atmosphere due to biomass burning, which provides an ideal scenario for further investigation of this phenomenon in the presence of canopies with complex architecture. In this paper, the relation of aerosol optical depth and surface fluxes of mass and energy are evaluated over three study sites with artificial neural networks and radiative transfer modeling. Results indicate a significant effect of the aerosol on the flux of carbon dioxide between the vegetation and the atmosphere, as well as on energy exchange, including that surface fluxes are sensitive to second-order radiative impacts of aerosols on temperature, humidity, and friction velocity. CO2 exchanges increased in the presence of aerosol in up to 55 % in sites with complex canopy architecture. A decrease of approximately 12 % was observed for a site with shorter vegetation. Energy fluxes were negatively impacted by aerosols over all study sites.</description><subject>Aerosol effects</subject><subject>Aerosol optical depth</subject><subject>Aerosols</subject><subject>Arches</subject><subject>Architecture</subject><subject>Artificial neural networks</subject><subject>Atmosphere</subject><subject>Atmospheric aerosols</subject><subject>Atmospheric models</subject><subject>Biogeochemistry</subject><subject>Biomass burning</subject><subject>Burning</subject><subject>Canopies</subject><subject>Canopy</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide exchange</subject><subject>Carbon fixation</subject><subject>Deforestation</subject><subject>Earth</subject><subject>Ecosystems</subject><subject>Energy</subject><subject>Energy transfer</subject><subject>Exchanging</subject><subject>Fluxes</subject><subject>Greenhouse gases</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Optical analysis</subject><subject>Optical thickness</subject><subject>Particle size</subject><subject>Photosynthesis</subject><subject>Principal components analysis</subject><subject>Productivity</subject><subject>Radiative transfer</subject><subject>Solar radiation</subject><subject>Surface fluxes</subject><subject>Vegetation</subject><issn>1680-7316</issn><issn>1680-7324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNo9j0lPwzAQhSMEEqVw52iJc8BbFh-riqVSpV7gHE3tceuSxsVOWPon-MuYFnGZN3p68-lNll0zelswJe9A73JOcyGFSsrpSTZiZU3zSnB5-r-z8jy7iHFDKS8ok6Pse7qGALrH4PbQO98Rb0m_RhLAuGS8I3HbXQr8-oDBR99GkmLTBSfQGYIdhtUXse3wiZG47nA82cI-ZQxaHzD2RzAEvSZDdN0qrb2zTjtoSYdDOEj_4cNrvMzOLLQRr_50nL083D9Pn_L54nE2ncxzw6XqcyMKbStdAZXUamMVMpQVlTXKsqyUTbOorVGUFYXRNQDXKBQrrAXNzZKJcTY7co2HTbMLbgvhq_HgmoPhw6r5LalbbNDapVI2gUojbVWASLSSCVUvTWVqmVg3R9Yu-Lch_dts_BC6VL_hkknOWUmp-AFGMYLt</recordid><startdate>20200324</startdate><enddate>20200324</enddate><creator>Braghiere, Renato Kerches</creator><creator>Marcia Akemi Yamasoe</creator><creator>Nilton Manuel Évora do Rosário</creator><creator>Humberto Ribeiro da Rocha</creator><creator>de Souza Nogueira, José</creator><creator>Alessandro Carioca de Araújo</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>DOA</scope></search><sort><creationdate>20200324</creationdate><title>Characterization of the radiative impact of aerosols on CO2 and energy fluxes in the Amazon deforestation arch using artificial neural networks</title><author>Braghiere, Renato Kerches ; Marcia Akemi Yamasoe ; Nilton Manuel Évora do Rosário ; Humberto Ribeiro da Rocha ; de Souza Nogueira, José ; Alessandro Carioca de Araújo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d249t-d35cf7c7a040fcdf9e1e47048e46679f46658fd90155dc8aa2ce3915ffac2db13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerosol effects</topic><topic>Aerosol optical depth</topic><topic>Aerosols</topic><topic>Arches</topic><topic>Architecture</topic><topic>Artificial neural networks</topic><topic>Atmosphere</topic><topic>Atmospheric aerosols</topic><topic>Atmospheric models</topic><topic>Biogeochemistry</topic><topic>Biomass burning</topic><topic>Burning</topic><topic>Canopies</topic><topic>Canopy</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide exchange</topic><topic>Carbon fixation</topic><topic>Deforestation</topic><topic>Earth</topic><topic>Ecosystems</topic><topic>Energy</topic><topic>Energy transfer</topic><topic>Exchanging</topic><topic>Fluxes</topic><topic>Greenhouse gases</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Optical analysis</topic><topic>Optical thickness</topic><topic>Particle size</topic><topic>Photosynthesis</topic><topic>Principal components analysis</topic><topic>Productivity</topic><topic>Radiative transfer</topic><topic>Solar radiation</topic><topic>Surface fluxes</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Braghiere, Renato Kerches</creatorcontrib><creatorcontrib>Marcia Akemi Yamasoe</creatorcontrib><creatorcontrib>Nilton Manuel Évora do Rosário</creatorcontrib><creatorcontrib>Humberto Ribeiro da Rocha</creatorcontrib><creatorcontrib>de Souza Nogueira, José</creatorcontrib><creatorcontrib>Alessandro Carioca de Araújo</creatorcontrib><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Atmospheric chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Braghiere, Renato Kerches</au><au>Marcia Akemi Yamasoe</au><au>Nilton Manuel Évora do Rosário</au><au>Humberto Ribeiro da Rocha</au><au>de Souza Nogueira, José</au><au>Alessandro Carioca de Araújo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of the radiative impact of aerosols on CO2 and energy fluxes in the Amazon deforestation arch using artificial neural networks</atitle><jtitle>Atmospheric chemistry and physics</jtitle><date>2020-03-24</date><risdate>2020</risdate><volume>20</volume><issue>6</issue><spage>3439</spage><epage>3458</epage><pages>3439-3458</pages><issn>1680-7316</issn><eissn>1680-7324</eissn><abstract>In vegetation canopies with complex architectures, diffuse solar radiation can enhance carbon assimilation through photosynthesis because isotropic light is able to reach deeper layers of the canopy. Although this effect has been studied in the past decade, the mechanisms and impacts of this enhancement over South America remain poorly understood. Over the Amazon deforestation arch large amounts of aerosols are released into the atmosphere due to biomass burning, which provides an ideal scenario for further investigation of this phenomenon in the presence of canopies with complex architecture. In this paper, the relation of aerosol optical depth and surface fluxes of mass and energy are evaluated over three study sites with artificial neural networks and radiative transfer modeling. Results indicate a significant effect of the aerosol on the flux of carbon dioxide between the vegetation and the atmosphere, as well as on energy exchange, including that surface fluxes are sensitive to second-order radiative impacts of aerosols on temperature, humidity, and friction velocity. CO2 exchanges increased in the presence of aerosol in up to 55 % in sites with complex canopy architecture. A decrease of approximately 12 % was observed for a site with shorter vegetation. Energy fluxes were negatively impacted by aerosols over all study sites.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/acp-20-3439-2020</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1680-7316
ispartof Atmospheric chemistry and physics, 2020-03, Vol.20 (6), p.3439-3458
issn 1680-7316
1680-7324
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_effb99f55d6d4f75a3a2c61398bd7d84
source Publicly Available Content Database; DOAJ Directory of Open Access Journals; Alma/SFX Local Collection
subjects Aerosol effects
Aerosol optical depth
Aerosols
Arches
Architecture
Artificial neural networks
Atmosphere
Atmospheric aerosols
Atmospheric models
Biogeochemistry
Biomass burning
Burning
Canopies
Canopy
Carbon
Carbon dioxide
Carbon dioxide exchange
Carbon fixation
Deforestation
Earth
Ecosystems
Energy
Energy transfer
Exchanging
Fluxes
Greenhouse gases
Machine learning
Neural networks
Optical analysis
Optical thickness
Particle size
Photosynthesis
Principal components analysis
Productivity
Radiative transfer
Solar radiation
Surface fluxes
Vegetation
title Characterization of the radiative impact of aerosols on CO2 and energy fluxes in the Amazon deforestation arch using artificial neural networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T17%3A32%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20the%20radiative%20impact%20of%20aerosols%20on%20CO2%20and%20energy%20fluxes%20in%20the%20Amazon%20deforestation%20arch%20using%20artificial%20neural%20networks&rft.jtitle=Atmospheric%20chemistry%20and%20physics&rft.au=Braghiere,%20Renato%20Kerches&rft.date=2020-03-24&rft.volume=20&rft.issue=6&rft.spage=3439&rft.epage=3458&rft.pages=3439-3458&rft.issn=1680-7316&rft.eissn=1680-7324&rft_id=info:doi/10.5194/acp-20-3439-2020&rft_dat=%3Cproquest_doaj_%3E2414221600%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-d249t-d35cf7c7a040fcdf9e1e47048e46679f46658fd90155dc8aa2ce3915ffac2db13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2414221600&rft_id=info:pmid/&rfr_iscdi=true