Loading…
A High Precision On-Line Detection Method for IGBT Junction Temperature Based on Stepwise Regression Algorithm
The insulated gate bipolar transistor (IGBT), one of the most vulnerable component, is one of the most precious central component in the converter interior. High junction temperature will lead to device failure, which is the main reason of failure of power electronic system. Therefore, on-line high...
Saved in:
Published in: | IEEE access 2020, Vol.8, p.186172-186180 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-70fe5fcb116f61ba5dc57ad6bf0f872cb06713c5c12a3489d3161613a1aad7393 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-70fe5fcb116f61ba5dc57ad6bf0f872cb06713c5c12a3489d3161613a1aad7393 |
container_end_page | 186180 |
container_issue | |
container_start_page | 186172 |
container_title | IEEE access |
container_volume | 8 |
creator | Shao, Lingfeng Hu, Yi Xu, Guoqing |
description | The insulated gate bipolar transistor (IGBT), one of the most vulnerable component, is one of the most precious central component in the converter interior. High junction temperature will lead to device failure, which is the main reason of failure of power electronic system. Therefore, on-line high precision measurement of IGBT module junction temperature is the basis of life prediction and reliability evaluation of high-power power conversion equipment. In this paper, the principle of IGBT junction temperature extraction and the latest development of related technologies are summarized. In particular, the working principle and shortcomings of temperature sensitive electrical parameter (TSEP) method are summarized. The change of junction temperature will affect the inter-electrode capacitance in the internal structure of IGBT, which will cause the change of temperature sensitive electrical parameters. The single temperature sensitive electrical parameter method is easily affected by IGBT structure and inter-electrode capacitance. This paper presents an algorithm for high precision on-line detection of IGBT junction temperature. The parameter types are optimized by stepwise regression and the model is established accordingly. In this paper, IGBT: FF50R12RT4 is used as the experimental equipment. By comparing the junction temperature model established based on multiple linear stepwise regression algorithm with the junction temperature model based on traditional temperature sensitive electrical parameters, it is proved that the algorithm has better fitting degree and precision, and the algorithm can be used for high precision online extraction of junction temperature. |
doi_str_mv | 10.1109/ACCESS.2020.3028904 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f0055a96ac204503ae91e2204a543385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9214524</ieee_id><doaj_id>oai_doaj_org_article_f0055a96ac204503ae91e2204a543385</doaj_id><sourcerecordid>2453817260</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-70fe5fcb116f61ba5dc57ad6bf0f872cb06713c5c12a3489d3161613a1aad7393</originalsourceid><addsrcrecordid>eNpNUcFOIzEMHaFFAgFfwCXSnqfrJJPMzLF02VJUBNp2z1GacdpU7aSbpEL8PSmDEPbB1rPfs6VXFLcURpRC-2s8mdwvFiMGDEYcWNNCdVZcMirbkgsuf3zrL4qbGLeQo8mQqC-Lfkwe3HpDXgIaF53vyXNfzl2P5DcmNOmEPGHa-I5YH8hserckj8d-GCxxf8Cg0zEgudMRO5LBRcLDq4tI_uI6YPzQHO_WPri02V8X51bvIt581qvi35_75eShnD9PZ5PxvDQVNKmswaKwZkWptJKutOiMqHUnVxZsUzOzAllTboShTPOqaTtOZU6uqdZdzVt-VcwG3c7rrToEt9fhTXnt1Afgw1rpkJzZobIAQuhWasOgEsA1thRZ7rWoOG9E1vo5aB2C_3_EmNTWH0Of31esEryhNZOQt_iwZYKPMaD9ukpBnXxSg0_q5JP69CmzbgeWQ8QvRstoJVjF3wEcZ40B</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453817260</pqid></control><display><type>article</type><title>A High Precision On-Line Detection Method for IGBT Junction Temperature Based on Stepwise Regression Algorithm</title><source>IEEE Xplore Open Access Journals</source><creator>Shao, Lingfeng ; Hu, Yi ; Xu, Guoqing</creator><creatorcontrib>Shao, Lingfeng ; Hu, Yi ; Xu, Guoqing</creatorcontrib><description>The insulated gate bipolar transistor (IGBT), one of the most vulnerable component, is one of the most precious central component in the converter interior. High junction temperature will lead to device failure, which is the main reason of failure of power electronic system. Therefore, on-line high precision measurement of IGBT module junction temperature is the basis of life prediction and reliability evaluation of high-power power conversion equipment. In this paper, the principle of IGBT junction temperature extraction and the latest development of related technologies are summarized. In particular, the working principle and shortcomings of temperature sensitive electrical parameter (TSEP) method are summarized. The change of junction temperature will affect the inter-electrode capacitance in the internal structure of IGBT, which will cause the change of temperature sensitive electrical parameters. The single temperature sensitive electrical parameter method is easily affected by IGBT structure and inter-electrode capacitance. This paper presents an algorithm for high precision on-line detection of IGBT junction temperature. The parameter types are optimized by stepwise regression and the model is established accordingly. In this paper, IGBT: FF50R12RT4 is used as the experimental equipment. By comparing the junction temperature model established based on multiple linear stepwise regression algorithm with the junction temperature model based on traditional temperature sensitive electrical parameters, it is proved that the algorithm has better fitting degree and precision, and the algorithm can be used for high precision online extraction of junction temperature.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3028904</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Capacitance ; Capacitors ; condition monitoring ; Converters ; Electrodes ; Electronic systems ; Energy conversion ; insulated gate bipolar transistor ; Insulated gate bipolar transistors ; Junctions ; Life prediction ; Logic gates ; on-line junction temperature extraction ; Parameter sensitivity ; Regression models ; reliability ; Reliability analysis ; Semiconductor devices ; stepwise regression ; Temperature measurement ; Temperature sensitive electrical parameters ; Temperature sensors</subject><ispartof>IEEE access, 2020, Vol.8, p.186172-186180</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-70fe5fcb116f61ba5dc57ad6bf0f872cb06713c5c12a3489d3161613a1aad7393</citedby><cites>FETCH-LOGICAL-c408t-70fe5fcb116f61ba5dc57ad6bf0f872cb06713c5c12a3489d3161613a1aad7393</cites><orcidid>0000-0001-6744-8844 ; 0000-0002-3582-0856</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9214524$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Shao, Lingfeng</creatorcontrib><creatorcontrib>Hu, Yi</creatorcontrib><creatorcontrib>Xu, Guoqing</creatorcontrib><title>A High Precision On-Line Detection Method for IGBT Junction Temperature Based on Stepwise Regression Algorithm</title><title>IEEE access</title><addtitle>Access</addtitle><description>The insulated gate bipolar transistor (IGBT), one of the most vulnerable component, is one of the most precious central component in the converter interior. High junction temperature will lead to device failure, which is the main reason of failure of power electronic system. Therefore, on-line high precision measurement of IGBT module junction temperature is the basis of life prediction and reliability evaluation of high-power power conversion equipment. In this paper, the principle of IGBT junction temperature extraction and the latest development of related technologies are summarized. In particular, the working principle and shortcomings of temperature sensitive electrical parameter (TSEP) method are summarized. The change of junction temperature will affect the inter-electrode capacitance in the internal structure of IGBT, which will cause the change of temperature sensitive electrical parameters. The single temperature sensitive electrical parameter method is easily affected by IGBT structure and inter-electrode capacitance. This paper presents an algorithm for high precision on-line detection of IGBT junction temperature. The parameter types are optimized by stepwise regression and the model is established accordingly. In this paper, IGBT: FF50R12RT4 is used as the experimental equipment. By comparing the junction temperature model established based on multiple linear stepwise regression algorithm with the junction temperature model based on traditional temperature sensitive electrical parameters, it is proved that the algorithm has better fitting degree and precision, and the algorithm can be used for high precision online extraction of junction temperature.</description><subject>Algorithms</subject><subject>Capacitance</subject><subject>Capacitors</subject><subject>condition monitoring</subject><subject>Converters</subject><subject>Electrodes</subject><subject>Electronic systems</subject><subject>Energy conversion</subject><subject>insulated gate bipolar transistor</subject><subject>Insulated gate bipolar transistors</subject><subject>Junctions</subject><subject>Life prediction</subject><subject>Logic gates</subject><subject>on-line junction temperature extraction</subject><subject>Parameter sensitivity</subject><subject>Regression models</subject><subject>reliability</subject><subject>Reliability analysis</subject><subject>Semiconductor devices</subject><subject>stepwise regression</subject><subject>Temperature measurement</subject><subject>Temperature sensitive electrical parameters</subject><subject>Temperature sensors</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFOIzEMHaFFAgFfwCXSnqfrJJPMzLF02VJUBNp2z1GacdpU7aSbpEL8PSmDEPbB1rPfs6VXFLcURpRC-2s8mdwvFiMGDEYcWNNCdVZcMirbkgsuf3zrL4qbGLeQo8mQqC-Lfkwe3HpDXgIaF53vyXNfzl2P5DcmNOmEPGHa-I5YH8hserckj8d-GCxxf8Cg0zEgudMRO5LBRcLDq4tI_uI6YPzQHO_WPri02V8X51bvIt581qvi35_75eShnD9PZ5PxvDQVNKmswaKwZkWptJKutOiMqHUnVxZsUzOzAllTboShTPOqaTtOZU6uqdZdzVt-VcwG3c7rrToEt9fhTXnt1Afgw1rpkJzZobIAQuhWasOgEsA1thRZ7rWoOG9E1vo5aB2C_3_EmNTWH0Of31esEryhNZOQt_iwZYKPMaD9ukpBnXxSg0_q5JP69CmzbgeWQ8QvRstoJVjF3wEcZ40B</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Shao, Lingfeng</creator><creator>Hu, Yi</creator><creator>Xu, Guoqing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6744-8844</orcidid><orcidid>https://orcid.org/0000-0002-3582-0856</orcidid></search><sort><creationdate>2020</creationdate><title>A High Precision On-Line Detection Method for IGBT Junction Temperature Based on Stepwise Regression Algorithm</title><author>Shao, Lingfeng ; Hu, Yi ; Xu, Guoqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-70fe5fcb116f61ba5dc57ad6bf0f872cb06713c5c12a3489d3161613a1aad7393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Capacitance</topic><topic>Capacitors</topic><topic>condition monitoring</topic><topic>Converters</topic><topic>Electrodes</topic><topic>Electronic systems</topic><topic>Energy conversion</topic><topic>insulated gate bipolar transistor</topic><topic>Insulated gate bipolar transistors</topic><topic>Junctions</topic><topic>Life prediction</topic><topic>Logic gates</topic><topic>on-line junction temperature extraction</topic><topic>Parameter sensitivity</topic><topic>Regression models</topic><topic>reliability</topic><topic>Reliability analysis</topic><topic>Semiconductor devices</topic><topic>stepwise regression</topic><topic>Temperature measurement</topic><topic>Temperature sensitive electrical parameters</topic><topic>Temperature sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shao, Lingfeng</creatorcontrib><creatorcontrib>Hu, Yi</creatorcontrib><creatorcontrib>Xu, Guoqing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shao, Lingfeng</au><au>Hu, Yi</au><au>Xu, Guoqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A High Precision On-Line Detection Method for IGBT Junction Temperature Based on Stepwise Regression Algorithm</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>186172</spage><epage>186180</epage><pages>186172-186180</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The insulated gate bipolar transistor (IGBT), one of the most vulnerable component, is one of the most precious central component in the converter interior. High junction temperature will lead to device failure, which is the main reason of failure of power electronic system. Therefore, on-line high precision measurement of IGBT module junction temperature is the basis of life prediction and reliability evaluation of high-power power conversion equipment. In this paper, the principle of IGBT junction temperature extraction and the latest development of related technologies are summarized. In particular, the working principle and shortcomings of temperature sensitive electrical parameter (TSEP) method are summarized. The change of junction temperature will affect the inter-electrode capacitance in the internal structure of IGBT, which will cause the change of temperature sensitive electrical parameters. The single temperature sensitive electrical parameter method is easily affected by IGBT structure and inter-electrode capacitance. This paper presents an algorithm for high precision on-line detection of IGBT junction temperature. The parameter types are optimized by stepwise regression and the model is established accordingly. In this paper, IGBT: FF50R12RT4 is used as the experimental equipment. By comparing the junction temperature model established based on multiple linear stepwise regression algorithm with the junction temperature model based on traditional temperature sensitive electrical parameters, it is proved that the algorithm has better fitting degree and precision, and the algorithm can be used for high precision online extraction of junction temperature.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3028904</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6744-8844</orcidid><orcidid>https://orcid.org/0000-0002-3582-0856</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.186172-186180 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_f0055a96ac204503ae91e2204a543385 |
source | IEEE Xplore Open Access Journals |
subjects | Algorithms Capacitance Capacitors condition monitoring Converters Electrodes Electronic systems Energy conversion insulated gate bipolar transistor Insulated gate bipolar transistors Junctions Life prediction Logic gates on-line junction temperature extraction Parameter sensitivity Regression models reliability Reliability analysis Semiconductor devices stepwise regression Temperature measurement Temperature sensitive electrical parameters Temperature sensors |
title | A High Precision On-Line Detection Method for IGBT Junction Temperature Based on Stepwise Regression Algorithm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A49%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20High%20Precision%20On-Line%20Detection%20Method%20for%20IGBT%20Junction%20Temperature%20Based%20on%20Stepwise%20Regression%20Algorithm&rft.jtitle=IEEE%20access&rft.au=Shao,%20Lingfeng&rft.date=2020&rft.volume=8&rft.spage=186172&rft.epage=186180&rft.pages=186172-186180&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3028904&rft_dat=%3Cproquest_doaj_%3E2453817260%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-70fe5fcb116f61ba5dc57ad6bf0f872cb06713c5c12a3489d3161613a1aad7393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2453817260&rft_id=info:pmid/&rft_ieee_id=9214524&rfr_iscdi=true |