Loading…

A High Precision On-Line Detection Method for IGBT Junction Temperature Based on Stepwise Regression Algorithm

The insulated gate bipolar transistor (IGBT), one of the most vulnerable component, is one of the most precious central component in the converter interior. High junction temperature will lead to device failure, which is the main reason of failure of power electronic system. Therefore, on-line high...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2020, Vol.8, p.186172-186180
Main Authors: Shao, Lingfeng, Hu, Yi, Xu, Guoqing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-70fe5fcb116f61ba5dc57ad6bf0f872cb06713c5c12a3489d3161613a1aad7393
cites cdi_FETCH-LOGICAL-c408t-70fe5fcb116f61ba5dc57ad6bf0f872cb06713c5c12a3489d3161613a1aad7393
container_end_page 186180
container_issue
container_start_page 186172
container_title IEEE access
container_volume 8
creator Shao, Lingfeng
Hu, Yi
Xu, Guoqing
description The insulated gate bipolar transistor (IGBT), one of the most vulnerable component, is one of the most precious central component in the converter interior. High junction temperature will lead to device failure, which is the main reason of failure of power electronic system. Therefore, on-line high precision measurement of IGBT module junction temperature is the basis of life prediction and reliability evaluation of high-power power conversion equipment. In this paper, the principle of IGBT junction temperature extraction and the latest development of related technologies are summarized. In particular, the working principle and shortcomings of temperature sensitive electrical parameter (TSEP) method are summarized. The change of junction temperature will affect the inter-electrode capacitance in the internal structure of IGBT, which will cause the change of temperature sensitive electrical parameters. The single temperature sensitive electrical parameter method is easily affected by IGBT structure and inter-electrode capacitance. This paper presents an algorithm for high precision on-line detection of IGBT junction temperature. The parameter types are optimized by stepwise regression and the model is established accordingly. In this paper, IGBT: FF50R12RT4 is used as the experimental equipment. By comparing the junction temperature model established based on multiple linear stepwise regression algorithm with the junction temperature model based on traditional temperature sensitive electrical parameters, it is proved that the algorithm has better fitting degree and precision, and the algorithm can be used for high precision online extraction of junction temperature.
doi_str_mv 10.1109/ACCESS.2020.3028904
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f0055a96ac204503ae91e2204a543385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9214524</ieee_id><doaj_id>oai_doaj_org_article_f0055a96ac204503ae91e2204a543385</doaj_id><sourcerecordid>2453817260</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-70fe5fcb116f61ba5dc57ad6bf0f872cb06713c5c12a3489d3161613a1aad7393</originalsourceid><addsrcrecordid>eNpNUcFOIzEMHaFFAgFfwCXSnqfrJJPMzLF02VJUBNp2z1GacdpU7aSbpEL8PSmDEPbB1rPfs6VXFLcURpRC-2s8mdwvFiMGDEYcWNNCdVZcMirbkgsuf3zrL4qbGLeQo8mQqC-Lfkwe3HpDXgIaF53vyXNfzl2P5DcmNOmEPGHa-I5YH8hserckj8d-GCxxf8Cg0zEgudMRO5LBRcLDq4tI_uI6YPzQHO_WPri02V8X51bvIt581qvi35_75eShnD9PZ5PxvDQVNKmswaKwZkWptJKutOiMqHUnVxZsUzOzAllTboShTPOqaTtOZU6uqdZdzVt-VcwG3c7rrToEt9fhTXnt1Afgw1rpkJzZobIAQuhWasOgEsA1thRZ7rWoOG9E1vo5aB2C_3_EmNTWH0Of31esEryhNZOQt_iwZYKPMaD9ukpBnXxSg0_q5JP69CmzbgeWQ8QvRstoJVjF3wEcZ40B</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453817260</pqid></control><display><type>article</type><title>A High Precision On-Line Detection Method for IGBT Junction Temperature Based on Stepwise Regression Algorithm</title><source>IEEE Xplore Open Access Journals</source><creator>Shao, Lingfeng ; Hu, Yi ; Xu, Guoqing</creator><creatorcontrib>Shao, Lingfeng ; Hu, Yi ; Xu, Guoqing</creatorcontrib><description>The insulated gate bipolar transistor (IGBT), one of the most vulnerable component, is one of the most precious central component in the converter interior. High junction temperature will lead to device failure, which is the main reason of failure of power electronic system. Therefore, on-line high precision measurement of IGBT module junction temperature is the basis of life prediction and reliability evaluation of high-power power conversion equipment. In this paper, the principle of IGBT junction temperature extraction and the latest development of related technologies are summarized. In particular, the working principle and shortcomings of temperature sensitive electrical parameter (TSEP) method are summarized. The change of junction temperature will affect the inter-electrode capacitance in the internal structure of IGBT, which will cause the change of temperature sensitive electrical parameters. The single temperature sensitive electrical parameter method is easily affected by IGBT structure and inter-electrode capacitance. This paper presents an algorithm for high precision on-line detection of IGBT junction temperature. The parameter types are optimized by stepwise regression and the model is established accordingly. In this paper, IGBT: FF50R12RT4 is used as the experimental equipment. By comparing the junction temperature model established based on multiple linear stepwise regression algorithm with the junction temperature model based on traditional temperature sensitive electrical parameters, it is proved that the algorithm has better fitting degree and precision, and the algorithm can be used for high precision online extraction of junction temperature.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3028904</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Capacitance ; Capacitors ; condition monitoring ; Converters ; Electrodes ; Electronic systems ; Energy conversion ; insulated gate bipolar transistor ; Insulated gate bipolar transistors ; Junctions ; Life prediction ; Logic gates ; on-line junction temperature extraction ; Parameter sensitivity ; Regression models ; reliability ; Reliability analysis ; Semiconductor devices ; stepwise regression ; Temperature measurement ; Temperature sensitive electrical parameters ; Temperature sensors</subject><ispartof>IEEE access, 2020, Vol.8, p.186172-186180</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-70fe5fcb116f61ba5dc57ad6bf0f872cb06713c5c12a3489d3161613a1aad7393</citedby><cites>FETCH-LOGICAL-c408t-70fe5fcb116f61ba5dc57ad6bf0f872cb06713c5c12a3489d3161613a1aad7393</cites><orcidid>0000-0001-6744-8844 ; 0000-0002-3582-0856</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9214524$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Shao, Lingfeng</creatorcontrib><creatorcontrib>Hu, Yi</creatorcontrib><creatorcontrib>Xu, Guoqing</creatorcontrib><title>A High Precision On-Line Detection Method for IGBT Junction Temperature Based on Stepwise Regression Algorithm</title><title>IEEE access</title><addtitle>Access</addtitle><description>The insulated gate bipolar transistor (IGBT), one of the most vulnerable component, is one of the most precious central component in the converter interior. High junction temperature will lead to device failure, which is the main reason of failure of power electronic system. Therefore, on-line high precision measurement of IGBT module junction temperature is the basis of life prediction and reliability evaluation of high-power power conversion equipment. In this paper, the principle of IGBT junction temperature extraction and the latest development of related technologies are summarized. In particular, the working principle and shortcomings of temperature sensitive electrical parameter (TSEP) method are summarized. The change of junction temperature will affect the inter-electrode capacitance in the internal structure of IGBT, which will cause the change of temperature sensitive electrical parameters. The single temperature sensitive electrical parameter method is easily affected by IGBT structure and inter-electrode capacitance. This paper presents an algorithm for high precision on-line detection of IGBT junction temperature. The parameter types are optimized by stepwise regression and the model is established accordingly. In this paper, IGBT: FF50R12RT4 is used as the experimental equipment. By comparing the junction temperature model established based on multiple linear stepwise regression algorithm with the junction temperature model based on traditional temperature sensitive electrical parameters, it is proved that the algorithm has better fitting degree and precision, and the algorithm can be used for high precision online extraction of junction temperature.</description><subject>Algorithms</subject><subject>Capacitance</subject><subject>Capacitors</subject><subject>condition monitoring</subject><subject>Converters</subject><subject>Electrodes</subject><subject>Electronic systems</subject><subject>Energy conversion</subject><subject>insulated gate bipolar transistor</subject><subject>Insulated gate bipolar transistors</subject><subject>Junctions</subject><subject>Life prediction</subject><subject>Logic gates</subject><subject>on-line junction temperature extraction</subject><subject>Parameter sensitivity</subject><subject>Regression models</subject><subject>reliability</subject><subject>Reliability analysis</subject><subject>Semiconductor devices</subject><subject>stepwise regression</subject><subject>Temperature measurement</subject><subject>Temperature sensitive electrical parameters</subject><subject>Temperature sensors</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFOIzEMHaFFAgFfwCXSnqfrJJPMzLF02VJUBNp2z1GacdpU7aSbpEL8PSmDEPbB1rPfs6VXFLcURpRC-2s8mdwvFiMGDEYcWNNCdVZcMirbkgsuf3zrL4qbGLeQo8mQqC-Lfkwe3HpDXgIaF53vyXNfzl2P5DcmNOmEPGHa-I5YH8hserckj8d-GCxxf8Cg0zEgudMRO5LBRcLDq4tI_uI6YPzQHO_WPri02V8X51bvIt581qvi35_75eShnD9PZ5PxvDQVNKmswaKwZkWptJKutOiMqHUnVxZsUzOzAllTboShTPOqaTtOZU6uqdZdzVt-VcwG3c7rrToEt9fhTXnt1Afgw1rpkJzZobIAQuhWasOgEsA1thRZ7rWoOG9E1vo5aB2C_3_EmNTWH0Of31esEryhNZOQt_iwZYKPMaD9ukpBnXxSg0_q5JP69CmzbgeWQ8QvRstoJVjF3wEcZ40B</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Shao, Lingfeng</creator><creator>Hu, Yi</creator><creator>Xu, Guoqing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6744-8844</orcidid><orcidid>https://orcid.org/0000-0002-3582-0856</orcidid></search><sort><creationdate>2020</creationdate><title>A High Precision On-Line Detection Method for IGBT Junction Temperature Based on Stepwise Regression Algorithm</title><author>Shao, Lingfeng ; Hu, Yi ; Xu, Guoqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-70fe5fcb116f61ba5dc57ad6bf0f872cb06713c5c12a3489d3161613a1aad7393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Capacitance</topic><topic>Capacitors</topic><topic>condition monitoring</topic><topic>Converters</topic><topic>Electrodes</topic><topic>Electronic systems</topic><topic>Energy conversion</topic><topic>insulated gate bipolar transistor</topic><topic>Insulated gate bipolar transistors</topic><topic>Junctions</topic><topic>Life prediction</topic><topic>Logic gates</topic><topic>on-line junction temperature extraction</topic><topic>Parameter sensitivity</topic><topic>Regression models</topic><topic>reliability</topic><topic>Reliability analysis</topic><topic>Semiconductor devices</topic><topic>stepwise regression</topic><topic>Temperature measurement</topic><topic>Temperature sensitive electrical parameters</topic><topic>Temperature sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shao, Lingfeng</creatorcontrib><creatorcontrib>Hu, Yi</creatorcontrib><creatorcontrib>Xu, Guoqing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shao, Lingfeng</au><au>Hu, Yi</au><au>Xu, Guoqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A High Precision On-Line Detection Method for IGBT Junction Temperature Based on Stepwise Regression Algorithm</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>186172</spage><epage>186180</epage><pages>186172-186180</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The insulated gate bipolar transistor (IGBT), one of the most vulnerable component, is one of the most precious central component in the converter interior. High junction temperature will lead to device failure, which is the main reason of failure of power electronic system. Therefore, on-line high precision measurement of IGBT module junction temperature is the basis of life prediction and reliability evaluation of high-power power conversion equipment. In this paper, the principle of IGBT junction temperature extraction and the latest development of related technologies are summarized. In particular, the working principle and shortcomings of temperature sensitive electrical parameter (TSEP) method are summarized. The change of junction temperature will affect the inter-electrode capacitance in the internal structure of IGBT, which will cause the change of temperature sensitive electrical parameters. The single temperature sensitive electrical parameter method is easily affected by IGBT structure and inter-electrode capacitance. This paper presents an algorithm for high precision on-line detection of IGBT junction temperature. The parameter types are optimized by stepwise regression and the model is established accordingly. In this paper, IGBT: FF50R12RT4 is used as the experimental equipment. By comparing the junction temperature model established based on multiple linear stepwise regression algorithm with the junction temperature model based on traditional temperature sensitive electrical parameters, it is proved that the algorithm has better fitting degree and precision, and the algorithm can be used for high precision online extraction of junction temperature.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3028904</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6744-8844</orcidid><orcidid>https://orcid.org/0000-0002-3582-0856</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.186172-186180
issn 2169-3536
2169-3536
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f0055a96ac204503ae91e2204a543385
source IEEE Xplore Open Access Journals
subjects Algorithms
Capacitance
Capacitors
condition monitoring
Converters
Electrodes
Electronic systems
Energy conversion
insulated gate bipolar transistor
Insulated gate bipolar transistors
Junctions
Life prediction
Logic gates
on-line junction temperature extraction
Parameter sensitivity
Regression models
reliability
Reliability analysis
Semiconductor devices
stepwise regression
Temperature measurement
Temperature sensitive electrical parameters
Temperature sensors
title A High Precision On-Line Detection Method for IGBT Junction Temperature Based on Stepwise Regression Algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A49%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20High%20Precision%20On-Line%20Detection%20Method%20for%20IGBT%20Junction%20Temperature%20Based%20on%20Stepwise%20Regression%20Algorithm&rft.jtitle=IEEE%20access&rft.au=Shao,%20Lingfeng&rft.date=2020&rft.volume=8&rft.spage=186172&rft.epage=186180&rft.pages=186172-186180&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3028904&rft_dat=%3Cproquest_doaj_%3E2453817260%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-70fe5fcb116f61ba5dc57ad6bf0f872cb06713c5c12a3489d3161613a1aad7393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2453817260&rft_id=info:pmid/&rft_ieee_id=9214524&rfr_iscdi=true