Loading…

Bayesian calibration of generalized pools of predictive distributions

Decision-makers often consult different experts to build reliable forecasts on variables of interest. Combining more opinions and calibrating them to maximize the forecast accuracy is consequently a crucial issue in several economic problems. This paper applies a Bayesian beta mixture model to deriv...

Full description

Saved in:
Bibliographic Details
Published in:Econometrics 2016-03, Vol.4 (1), p.1-24
Main Authors: Casarin, Roberto, Mantoan, Giulia, Ravazzolo, Francesco
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c470t-49b44f615bc3c4446aca338fc8e16809f2c43f38ee7f76f6962e3f9aa50e79af3
cites cdi_FETCH-LOGICAL-c470t-49b44f615bc3c4446aca338fc8e16809f2c43f38ee7f76f6962e3f9aa50e79af3
container_end_page 24
container_issue 1
container_start_page 1
container_title Econometrics
container_volume 4
creator Casarin, Roberto
Mantoan, Giulia
Ravazzolo, Francesco
description Decision-makers often consult different experts to build reliable forecasts on variables of interest. Combining more opinions and calibrating them to maximize the forecast accuracy is consequently a crucial issue in several economic problems. This paper applies a Bayesian beta mixture model to derive a combined and calibrated density function using random calibration functionals and random combination weights. In particular, it compares the application of linear, harmonic and logarithmic pooling in the Bayesian combination approach. The three combination schemes, i.e., linear, harmonic and logarithmic, are studied in simulation examples with multimodal densities and an empirical application with a large database of stock data. All of the experiments show that in a beta mixture calibration framework, the three combination schemes are substantially equivalent, achieving calibration, and no clear preference for one of them appears. The financial application shows that the linear pooling together with beta mixture calibration achieves the best results in terms of calibrated forecast.
doi_str_mv 10.3390/econometrics4010017
format article
fullrecord <record><control><sourceid>econis_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f02c0deae48b4ea59f3a8f581a1abbd7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f02c0deae48b4ea59f3a8f581a1abbd7</doaj_id><sourcerecordid>171870</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-49b44f615bc3c4446aca338fc8e16809f2c43f38ee7f76f6962e3f9aa50e79af3</originalsourceid><addsrcrecordid>eNptkN1KAzEQhYMoWLRPIMK-wGqyyebnUkvVQsEbvQ6z2UlJ2W5Ksgr16d1tRbxwbmY4c843MITcMHrHuaH36GIfdzik4LKgjFKmzsisqqq6ZEzI8z_zJZnnvKVjGcZ1pWZk-QgHzAH6wkEXmgRDiH0RfbHBHtMofWFb7GPs8iTuE7bBDeETizbk8WLzMfnzNbnw0GWc__Qr8v60fFu8lOvX59XiYV06oehQCtMI4SWrG8edEEKCA861dxqZ1NT4ygnuuUZUXkkvjayQewNQU1QGPL8iqxO3jbC1-xR2kA42QrBHIaaNhTQE16H1tHK0RUChG4FQG89B-1ozYNA0rRpZ_MRyKeac0P_yGLXTY-0_jx1Tt6fUtAz56MlDTJYpphXl32O6exo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bayesian calibration of generalized pools of predictive distributions</title><source>Publicly Available Content Database</source><source>ABI/INFORM Global</source><creator>Casarin, Roberto ; Mantoan, Giulia ; Ravazzolo, Francesco</creator><creatorcontrib>Casarin, Roberto ; Mantoan, Giulia ; Ravazzolo, Francesco</creatorcontrib><description>Decision-makers often consult different experts to build reliable forecasts on variables of interest. Combining more opinions and calibrating them to maximize the forecast accuracy is consequently a crucial issue in several economic problems. This paper applies a Bayesian beta mixture model to derive a combined and calibrated density function using random calibration functionals and random combination weights. In particular, it compares the application of linear, harmonic and logarithmic pooling in the Bayesian combination approach. The three combination schemes, i.e., linear, harmonic and logarithmic, are studied in simulation examples with multimodal densities and an empirical application with a large database of stock data. All of the experiments show that in a beta mixture calibration framework, the three combination schemes are substantially equivalent, achieving calibration, and no clear preference for one of them appears. The financial application shows that the linear pooling together with beta mixture calibration achieves the best results in terms of calibrated forecast.</description><identifier>ISSN: 2225-1146</identifier><identifier>EISSN: 2225-1146</identifier><identifier>DOI: 10.3390/econometrics4010017</identifier><language>eng</language><publisher>Basel: MDPI</publisher><subject>Bayesian inference ; beta mixtures ; density forecast ; forecast calibration ; forecast combination ; MCMC sampling</subject><ispartof>Econometrics, 2016-03, Vol.4 (1), p.1-24</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-49b44f615bc3c4446aca338fc8e16809f2c43f38ee7f76f6962e3f9aa50e79af3</citedby><cites>FETCH-LOGICAL-c470t-49b44f615bc3c4446aca338fc8e16809f2c43f38ee7f76f6962e3f9aa50e79af3</cites><orcidid>0000-0003-1746-9190</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Casarin, Roberto</creatorcontrib><creatorcontrib>Mantoan, Giulia</creatorcontrib><creatorcontrib>Ravazzolo, Francesco</creatorcontrib><title>Bayesian calibration of generalized pools of predictive distributions</title><title>Econometrics</title><description>Decision-makers often consult different experts to build reliable forecasts on variables of interest. Combining more opinions and calibrating them to maximize the forecast accuracy is consequently a crucial issue in several economic problems. This paper applies a Bayesian beta mixture model to derive a combined and calibrated density function using random calibration functionals and random combination weights. In particular, it compares the application of linear, harmonic and logarithmic pooling in the Bayesian combination approach. The three combination schemes, i.e., linear, harmonic and logarithmic, are studied in simulation examples with multimodal densities and an empirical application with a large database of stock data. All of the experiments show that in a beta mixture calibration framework, the three combination schemes are substantially equivalent, achieving calibration, and no clear preference for one of them appears. The financial application shows that the linear pooling together with beta mixture calibration achieves the best results in terms of calibrated forecast.</description><subject>Bayesian inference</subject><subject>beta mixtures</subject><subject>density forecast</subject><subject>forecast calibration</subject><subject>forecast combination</subject><subject>MCMC sampling</subject><issn>2225-1146</issn><issn>2225-1146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNptkN1KAzEQhYMoWLRPIMK-wGqyyebnUkvVQsEbvQ6z2UlJ2W5Ksgr16d1tRbxwbmY4c843MITcMHrHuaH36GIfdzik4LKgjFKmzsisqqq6ZEzI8z_zJZnnvKVjGcZ1pWZk-QgHzAH6wkEXmgRDiH0RfbHBHtMofWFb7GPs8iTuE7bBDeETizbk8WLzMfnzNbnw0GWc__Qr8v60fFu8lOvX59XiYV06oehQCtMI4SWrG8edEEKCA861dxqZ1NT4ygnuuUZUXkkvjayQewNQU1QGPL8iqxO3jbC1-xR2kA42QrBHIaaNhTQE16H1tHK0RUChG4FQG89B-1ozYNA0rRpZ_MRyKeac0P_yGLXTY-0_jx1Tt6fUtAz56MlDTJYpphXl32O6exo</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Casarin, Roberto</creator><creator>Mantoan, Giulia</creator><creator>Ravazzolo, Francesco</creator><general>MDPI</general><general>MDPI AG</general><scope>OT2</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1746-9190</orcidid></search><sort><creationdate>20160301</creationdate><title>Bayesian calibration of generalized pools of predictive distributions</title><author>Casarin, Roberto ; Mantoan, Giulia ; Ravazzolo, Francesco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-49b44f615bc3c4446aca338fc8e16809f2c43f38ee7f76f6962e3f9aa50e79af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bayesian inference</topic><topic>beta mixtures</topic><topic>density forecast</topic><topic>forecast calibration</topic><topic>forecast combination</topic><topic>MCMC sampling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Casarin, Roberto</creatorcontrib><creatorcontrib>Mantoan, Giulia</creatorcontrib><creatorcontrib>Ravazzolo, Francesco</creatorcontrib><collection>EconStor</collection><collection>CrossRef</collection><collection>Directory of Open Access Journals (Open Access)</collection><jtitle>Econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Casarin, Roberto</au><au>Mantoan, Giulia</au><au>Ravazzolo, Francesco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian calibration of generalized pools of predictive distributions</atitle><jtitle>Econometrics</jtitle><date>2016-03-01</date><risdate>2016</risdate><volume>4</volume><issue>1</issue><spage>1</spage><epage>24</epage><pages>1-24</pages><issn>2225-1146</issn><eissn>2225-1146</eissn><abstract>Decision-makers often consult different experts to build reliable forecasts on variables of interest. Combining more opinions and calibrating them to maximize the forecast accuracy is consequently a crucial issue in several economic problems. This paper applies a Bayesian beta mixture model to derive a combined and calibrated density function using random calibration functionals and random combination weights. In particular, it compares the application of linear, harmonic and logarithmic pooling in the Bayesian combination approach. The three combination schemes, i.e., linear, harmonic and logarithmic, are studied in simulation examples with multimodal densities and an empirical application with a large database of stock data. All of the experiments show that in a beta mixture calibration framework, the three combination schemes are substantially equivalent, achieving calibration, and no clear preference for one of them appears. The financial application shows that the linear pooling together with beta mixture calibration achieves the best results in terms of calibrated forecast.</abstract><cop>Basel</cop><pub>MDPI</pub><doi>10.3390/econometrics4010017</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-1746-9190</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2225-1146
ispartof Econometrics, 2016-03, Vol.4 (1), p.1-24
issn 2225-1146
2225-1146
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f02c0deae48b4ea59f3a8f581a1abbd7
source Publicly Available Content Database; ABI/INFORM Global
subjects Bayesian inference
beta mixtures
density forecast
forecast calibration
forecast combination
MCMC sampling
title Bayesian calibration of generalized pools of predictive distributions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T07%3A09%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-econis_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20calibration%20of%20generalized%20pools%20of%20predictive%20distributions&rft.jtitle=Econometrics&rft.au=Casarin,%20Roberto&rft.date=2016-03-01&rft.volume=4&rft.issue=1&rft.spage=1&rft.epage=24&rft.pages=1-24&rft.issn=2225-1146&rft.eissn=2225-1146&rft_id=info:doi/10.3390/econometrics4010017&rft_dat=%3Ceconis_doaj_%3E171870%3C/econis_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c470t-49b44f615bc3c4446aca338fc8e16809f2c43f38ee7f76f6962e3f9aa50e79af3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true