Loading…
Bayesian calibration of generalized pools of predictive distributions
Decision-makers often consult different experts to build reliable forecasts on variables of interest. Combining more opinions and calibrating them to maximize the forecast accuracy is consequently a crucial issue in several economic problems. This paper applies a Bayesian beta mixture model to deriv...
Saved in:
Published in: | Econometrics 2016-03, Vol.4 (1), p.1-24 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c470t-49b44f615bc3c4446aca338fc8e16809f2c43f38ee7f76f6962e3f9aa50e79af3 |
---|---|
cites | cdi_FETCH-LOGICAL-c470t-49b44f615bc3c4446aca338fc8e16809f2c43f38ee7f76f6962e3f9aa50e79af3 |
container_end_page | 24 |
container_issue | 1 |
container_start_page | 1 |
container_title | Econometrics |
container_volume | 4 |
creator | Casarin, Roberto Mantoan, Giulia Ravazzolo, Francesco |
description | Decision-makers often consult different experts to build reliable forecasts on variables of interest. Combining more opinions and calibrating them to maximize the forecast accuracy is consequently a crucial issue in several economic problems. This paper applies a Bayesian beta mixture model to derive a combined and calibrated density function using random calibration functionals and random combination weights. In particular, it compares the application of linear, harmonic and logarithmic pooling in the Bayesian combination approach. The three combination schemes, i.e., linear, harmonic and logarithmic, are studied in simulation examples with multimodal densities and an empirical application with a large database of stock data. All of the experiments show that in a beta mixture calibration framework, the three combination schemes are substantially equivalent, achieving calibration, and no clear preference for one of them appears. The financial application shows that the linear pooling together with beta mixture calibration achieves the best results in terms of calibrated forecast. |
doi_str_mv | 10.3390/econometrics4010017 |
format | article |
fullrecord | <record><control><sourceid>econis_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f02c0deae48b4ea59f3a8f581a1abbd7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f02c0deae48b4ea59f3a8f581a1abbd7</doaj_id><sourcerecordid>171870</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-49b44f615bc3c4446aca338fc8e16809f2c43f38ee7f76f6962e3f9aa50e79af3</originalsourceid><addsrcrecordid>eNptkN1KAzEQhYMoWLRPIMK-wGqyyebnUkvVQsEbvQ6z2UlJ2W5Ksgr16d1tRbxwbmY4c843MITcMHrHuaH36GIfdzik4LKgjFKmzsisqqq6ZEzI8z_zJZnnvKVjGcZ1pWZk-QgHzAH6wkEXmgRDiH0RfbHBHtMofWFb7GPs8iTuE7bBDeETizbk8WLzMfnzNbnw0GWc__Qr8v60fFu8lOvX59XiYV06oehQCtMI4SWrG8edEEKCA861dxqZ1NT4ygnuuUZUXkkvjayQewNQU1QGPL8iqxO3jbC1-xR2kA42QrBHIaaNhTQE16H1tHK0RUChG4FQG89B-1ozYNA0rRpZ_MRyKeac0P_yGLXTY-0_jx1Tt6fUtAz56MlDTJYpphXl32O6exo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bayesian calibration of generalized pools of predictive distributions</title><source>Publicly Available Content Database</source><source>ABI/INFORM Global</source><creator>Casarin, Roberto ; Mantoan, Giulia ; Ravazzolo, Francesco</creator><creatorcontrib>Casarin, Roberto ; Mantoan, Giulia ; Ravazzolo, Francesco</creatorcontrib><description>Decision-makers often consult different experts to build reliable forecasts on variables of interest. Combining more opinions and calibrating them to maximize the forecast accuracy is consequently a crucial issue in several economic problems. This paper applies a Bayesian beta mixture model to derive a combined and calibrated density function using random calibration functionals and random combination weights. In particular, it compares the application of linear, harmonic and logarithmic pooling in the Bayesian combination approach. The three combination schemes, i.e., linear, harmonic and logarithmic, are studied in simulation examples with multimodal densities and an empirical application with a large database of stock data. All of the experiments show that in a beta mixture calibration framework, the three combination schemes are substantially equivalent, achieving calibration, and no clear preference for one of them appears. The financial application shows that the linear pooling together with beta mixture calibration achieves the best results in terms of calibrated forecast.</description><identifier>ISSN: 2225-1146</identifier><identifier>EISSN: 2225-1146</identifier><identifier>DOI: 10.3390/econometrics4010017</identifier><language>eng</language><publisher>Basel: MDPI</publisher><subject>Bayesian inference ; beta mixtures ; density forecast ; forecast calibration ; forecast combination ; MCMC sampling</subject><ispartof>Econometrics, 2016-03, Vol.4 (1), p.1-24</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-49b44f615bc3c4446aca338fc8e16809f2c43f38ee7f76f6962e3f9aa50e79af3</citedby><cites>FETCH-LOGICAL-c470t-49b44f615bc3c4446aca338fc8e16809f2c43f38ee7f76f6962e3f9aa50e79af3</cites><orcidid>0000-0003-1746-9190</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Casarin, Roberto</creatorcontrib><creatorcontrib>Mantoan, Giulia</creatorcontrib><creatorcontrib>Ravazzolo, Francesco</creatorcontrib><title>Bayesian calibration of generalized pools of predictive distributions</title><title>Econometrics</title><description>Decision-makers often consult different experts to build reliable forecasts on variables of interest. Combining more opinions and calibrating them to maximize the forecast accuracy is consequently a crucial issue in several economic problems. This paper applies a Bayesian beta mixture model to derive a combined and calibrated density function using random calibration functionals and random combination weights. In particular, it compares the application of linear, harmonic and logarithmic pooling in the Bayesian combination approach. The three combination schemes, i.e., linear, harmonic and logarithmic, are studied in simulation examples with multimodal densities and an empirical application with a large database of stock data. All of the experiments show that in a beta mixture calibration framework, the three combination schemes are substantially equivalent, achieving calibration, and no clear preference for one of them appears. The financial application shows that the linear pooling together with beta mixture calibration achieves the best results in terms of calibrated forecast.</description><subject>Bayesian inference</subject><subject>beta mixtures</subject><subject>density forecast</subject><subject>forecast calibration</subject><subject>forecast combination</subject><subject>MCMC sampling</subject><issn>2225-1146</issn><issn>2225-1146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNptkN1KAzEQhYMoWLRPIMK-wGqyyebnUkvVQsEbvQ6z2UlJ2W5Ksgr16d1tRbxwbmY4c843MITcMHrHuaH36GIfdzik4LKgjFKmzsisqqq6ZEzI8z_zJZnnvKVjGcZ1pWZk-QgHzAH6wkEXmgRDiH0RfbHBHtMofWFb7GPs8iTuE7bBDeETizbk8WLzMfnzNbnw0GWc__Qr8v60fFu8lOvX59XiYV06oehQCtMI4SWrG8edEEKCA861dxqZ1NT4ygnuuUZUXkkvjayQewNQU1QGPL8iqxO3jbC1-xR2kA42QrBHIaaNhTQE16H1tHK0RUChG4FQG89B-1ozYNA0rRpZ_MRyKeac0P_yGLXTY-0_jx1Tt6fUtAz56MlDTJYpphXl32O6exo</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Casarin, Roberto</creator><creator>Mantoan, Giulia</creator><creator>Ravazzolo, Francesco</creator><general>MDPI</general><general>MDPI AG</general><scope>OT2</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1746-9190</orcidid></search><sort><creationdate>20160301</creationdate><title>Bayesian calibration of generalized pools of predictive distributions</title><author>Casarin, Roberto ; Mantoan, Giulia ; Ravazzolo, Francesco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-49b44f615bc3c4446aca338fc8e16809f2c43f38ee7f76f6962e3f9aa50e79af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bayesian inference</topic><topic>beta mixtures</topic><topic>density forecast</topic><topic>forecast calibration</topic><topic>forecast combination</topic><topic>MCMC sampling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Casarin, Roberto</creatorcontrib><creatorcontrib>Mantoan, Giulia</creatorcontrib><creatorcontrib>Ravazzolo, Francesco</creatorcontrib><collection>EconStor</collection><collection>CrossRef</collection><collection>Directory of Open Access Journals (Open Access)</collection><jtitle>Econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Casarin, Roberto</au><au>Mantoan, Giulia</au><au>Ravazzolo, Francesco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian calibration of generalized pools of predictive distributions</atitle><jtitle>Econometrics</jtitle><date>2016-03-01</date><risdate>2016</risdate><volume>4</volume><issue>1</issue><spage>1</spage><epage>24</epage><pages>1-24</pages><issn>2225-1146</issn><eissn>2225-1146</eissn><abstract>Decision-makers often consult different experts to build reliable forecasts on variables of interest. Combining more opinions and calibrating them to maximize the forecast accuracy is consequently a crucial issue in several economic problems. This paper applies a Bayesian beta mixture model to derive a combined and calibrated density function using random calibration functionals and random combination weights. In particular, it compares the application of linear, harmonic and logarithmic pooling in the Bayesian combination approach. The three combination schemes, i.e., linear, harmonic and logarithmic, are studied in simulation examples with multimodal densities and an empirical application with a large database of stock data. All of the experiments show that in a beta mixture calibration framework, the three combination schemes are substantially equivalent, achieving calibration, and no clear preference for one of them appears. The financial application shows that the linear pooling together with beta mixture calibration achieves the best results in terms of calibrated forecast.</abstract><cop>Basel</cop><pub>MDPI</pub><doi>10.3390/econometrics4010017</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-1746-9190</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2225-1146 |
ispartof | Econometrics, 2016-03, Vol.4 (1), p.1-24 |
issn | 2225-1146 2225-1146 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_f02c0deae48b4ea59f3a8f581a1abbd7 |
source | Publicly Available Content Database; ABI/INFORM Global |
subjects | Bayesian inference beta mixtures density forecast forecast calibration forecast combination MCMC sampling |
title | Bayesian calibration of generalized pools of predictive distributions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T07%3A09%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-econis_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20calibration%20of%20generalized%20pools%20of%20predictive%20distributions&rft.jtitle=Econometrics&rft.au=Casarin,%20Roberto&rft.date=2016-03-01&rft.volume=4&rft.issue=1&rft.spage=1&rft.epage=24&rft.pages=1-24&rft.issn=2225-1146&rft.eissn=2225-1146&rft_id=info:doi/10.3390/econometrics4010017&rft_dat=%3Ceconis_doaj_%3E171870%3C/econis_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c470t-49b44f615bc3c4446aca338fc8e16809f2c43f38ee7f76f6962e3f9aa50e79af3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |