Loading…

Hydrodynamic Cavitation-Assisted Synthesis of Nanocalcite

A systematic study was made on the synthesis of nanocalcite using a hydrodynamic cavitation reactor. The effects of various parameters such as diameter and geometry of orifice, CO2 flow rate, and Ca(OH)2 concentration were investigated. It was observed that the orifice diameter and its geometry had...

Full description

Saved in:
Bibliographic Details
Published in:International Journal of Chemical Engineering 2010-01, Vol.2010 (2010), p.1-8
Main Authors: Parande, Madan G., Ashokkumar, Muthupandian, Sonawane, Shirish H., Mahajan, Candrashekhar M., Ramjee, Laxminarayan, Kunte, Kshitij J., Gumfekar, Sarang P., Kate, Kunal H., Meshram, Satish P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a553t-ad7559eaa0a8d9d4b652eca6f3c414b76f4e287e48e7725d538ac1cb486cd1243
cites cdi_FETCH-LOGICAL-a553t-ad7559eaa0a8d9d4b652eca6f3c414b76f4e287e48e7725d538ac1cb486cd1243
container_end_page 8
container_issue 2010
container_start_page 1
container_title International Journal of Chemical Engineering
container_volume 2010
creator Parande, Madan G.
Ashokkumar, Muthupandian
Sonawane, Shirish H.
Mahajan, Candrashekhar M.
Ramjee, Laxminarayan
Kunte, Kshitij J.
Gumfekar, Sarang P.
Kate, Kunal H.
Meshram, Satish P.
description A systematic study was made on the synthesis of nanocalcite using a hydrodynamic cavitation reactor. The effects of various parameters such as diameter and geometry of orifice, CO2 flow rate, and Ca(OH)2 concentration were investigated. It was observed that the orifice diameter and its geometry had significant effect on the carbonation process. The reaction rate was significantly faster than that observed in a conventional carbonation process. The particle size was significantly affected by the reactor geometry. The results showed that an orifice with 5 holes of 1 mm size resulted in the particle size reduction to 37 nm. The experimental investigation reveals that hydrodynamic cavitation may be more energy efficient.
doi_str_mv 10.1155/2010/242963
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f03148b7bf9d4adb931ce22c845b103f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f03148b7bf9d4adb931ce22c845b103f</doaj_id><sourcerecordid>2286627551</sourcerecordid><originalsourceid>FETCH-LOGICAL-a553t-ad7559eaa0a8d9d4b652eca6f3c414b76f4e287e48e7725d538ac1cb486cd1243</originalsourceid><addsrcrecordid>eNqF0EtLAzEUBeBBFCy1K9dCcamMzXOSWZaitlB0oYK7cCcPm9JOamaqzL83daRbV3nwce7lZNklRncYcz4hCKMJYaQs6Ek2wIUUuURCnh7vxft5NmoaXyHGBEOc40FWzjsTg-lq2Ho9nsGXb6H1oc6nCTatNeOXrm5XNj3GwY2foA4aNtq39iI7c7Bp7OjvHGZvD_evs3m-fH5czKbLHDinbQ5GcF5aAATSlIZVBSdWQ-GoZphVonDMEiksk1YIwg2nEjTWFZOFNpgwOswWfa4JsFa76LcQOxXAq9-PED8UxNbrjVUOUcxkJSqXBoGpSoq1JURLxiuMqEtZ133WLobPvW1atQ77WKf1leRcloTQMqHbHukYmiZadxyKkTo0rQ5Nq77ppG96vfK1gW__D77qsU3EOjhixotUE_0BHaWGHQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>855892239</pqid></control><display><type>article</type><title>Hydrodynamic Cavitation-Assisted Synthesis of Nanocalcite</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Open Access: Wiley-Blackwell Open Access Journals</source><creator>Parande, Madan G. ; Ashokkumar, Muthupandian ; Sonawane, Shirish H. ; Mahajan, Candrashekhar M. ; Ramjee, Laxminarayan ; Kunte, Kshitij J. ; Gumfekar, Sarang P. ; Kate, Kunal H. ; Meshram, Satish P.</creator><contributor>Murzin, D.</contributor><creatorcontrib>Parande, Madan G. ; Ashokkumar, Muthupandian ; Sonawane, Shirish H. ; Mahajan, Candrashekhar M. ; Ramjee, Laxminarayan ; Kunte, Kshitij J. ; Gumfekar, Sarang P. ; Kate, Kunal H. ; Meshram, Satish P. ; Murzin, D.</creatorcontrib><description>A systematic study was made on the synthesis of nanocalcite using a hydrodynamic cavitation reactor. The effects of various parameters such as diameter and geometry of orifice, CO2 flow rate, and Ca(OH)2 concentration were investigated. It was observed that the orifice diameter and its geometry had significant effect on the carbonation process. The reaction rate was significantly faster than that observed in a conventional carbonation process. The particle size was significantly affected by the reactor geometry. The results showed that an orifice with 5 holes of 1 mm size resulted in the particle size reduction to 37 nm. The experimental investigation reveals that hydrodynamic cavitation may be more energy efficient.</description><identifier>ISSN: 1687-806X</identifier><identifier>EISSN: 1687-8078</identifier><identifier>DOI: 10.1155/2010/242963</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Puplishing Corporation</publisher><subject>Atoms &amp; subatomic particles ; Crystallization ; Geometry ; Grain size ; Nanocrystals ; Pressure gauges</subject><ispartof>International Journal of Chemical Engineering, 2010-01, Vol.2010 (2010), p.1-8</ispartof><rights>Copyright © 2010</rights><rights>Copyright © 2010 Shirish H. Sonawane et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a553t-ad7559eaa0a8d9d4b652eca6f3c414b76f4e287e48e7725d538ac1cb486cd1243</citedby><cites>FETCH-LOGICAL-a553t-ad7559eaa0a8d9d4b652eca6f3c414b76f4e287e48e7725d538ac1cb486cd1243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/855892239/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/855892239?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><contributor>Murzin, D.</contributor><creatorcontrib>Parande, Madan G.</creatorcontrib><creatorcontrib>Ashokkumar, Muthupandian</creatorcontrib><creatorcontrib>Sonawane, Shirish H.</creatorcontrib><creatorcontrib>Mahajan, Candrashekhar M.</creatorcontrib><creatorcontrib>Ramjee, Laxminarayan</creatorcontrib><creatorcontrib>Kunte, Kshitij J.</creatorcontrib><creatorcontrib>Gumfekar, Sarang P.</creatorcontrib><creatorcontrib>Kate, Kunal H.</creatorcontrib><creatorcontrib>Meshram, Satish P.</creatorcontrib><title>Hydrodynamic Cavitation-Assisted Synthesis of Nanocalcite</title><title>International Journal of Chemical Engineering</title><description>A systematic study was made on the synthesis of nanocalcite using a hydrodynamic cavitation reactor. The effects of various parameters such as diameter and geometry of orifice, CO2 flow rate, and Ca(OH)2 concentration were investigated. It was observed that the orifice diameter and its geometry had significant effect on the carbonation process. The reaction rate was significantly faster than that observed in a conventional carbonation process. The particle size was significantly affected by the reactor geometry. The results showed that an orifice with 5 holes of 1 mm size resulted in the particle size reduction to 37 nm. The experimental investigation reveals that hydrodynamic cavitation may be more energy efficient.</description><subject>Atoms &amp; subatomic particles</subject><subject>Crystallization</subject><subject>Geometry</subject><subject>Grain size</subject><subject>Nanocrystals</subject><subject>Pressure gauges</subject><issn>1687-806X</issn><issn>1687-8078</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqF0EtLAzEUBeBBFCy1K9dCcamMzXOSWZaitlB0oYK7cCcPm9JOamaqzL83daRbV3nwce7lZNklRncYcz4hCKMJYaQs6Ek2wIUUuURCnh7vxft5NmoaXyHGBEOc40FWzjsTg-lq2Ho9nsGXb6H1oc6nCTatNeOXrm5XNj3GwY2foA4aNtq39iI7c7Bp7OjvHGZvD_evs3m-fH5czKbLHDinbQ5GcF5aAATSlIZVBSdWQ-GoZphVonDMEiksk1YIwg2nEjTWFZOFNpgwOswWfa4JsFa76LcQOxXAq9-PED8UxNbrjVUOUcxkJSqXBoGpSoq1JURLxiuMqEtZ133WLobPvW1atQ77WKf1leRcloTQMqHbHukYmiZadxyKkTo0rQ5Nq77ppG96vfK1gW__D77qsU3EOjhixotUE_0BHaWGHQ</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Parande, Madan G.</creator><creator>Ashokkumar, Muthupandian</creator><creator>Sonawane, Shirish H.</creator><creator>Mahajan, Candrashekhar M.</creator><creator>Ramjee, Laxminarayan</creator><creator>Kunte, Kshitij J.</creator><creator>Gumfekar, Sarang P.</creator><creator>Kate, Kunal H.</creator><creator>Meshram, Satish P.</creator><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20100101</creationdate><title>Hydrodynamic Cavitation-Assisted Synthesis of Nanocalcite</title><author>Parande, Madan G. ; Ashokkumar, Muthupandian ; Sonawane, Shirish H. ; Mahajan, Candrashekhar M. ; Ramjee, Laxminarayan ; Kunte, Kshitij J. ; Gumfekar, Sarang P. ; Kate, Kunal H. ; Meshram, Satish P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a553t-ad7559eaa0a8d9d4b652eca6f3c414b76f4e287e48e7725d538ac1cb486cd1243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Atoms &amp; subatomic particles</topic><topic>Crystallization</topic><topic>Geometry</topic><topic>Grain size</topic><topic>Nanocrystals</topic><topic>Pressure gauges</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parande, Madan G.</creatorcontrib><creatorcontrib>Ashokkumar, Muthupandian</creatorcontrib><creatorcontrib>Sonawane, Shirish H.</creatorcontrib><creatorcontrib>Mahajan, Candrashekhar M.</creatorcontrib><creatorcontrib>Ramjee, Laxminarayan</creatorcontrib><creatorcontrib>Kunte, Kshitij J.</creatorcontrib><creatorcontrib>Gumfekar, Sarang P.</creatorcontrib><creatorcontrib>Kate, Kunal H.</creatorcontrib><creatorcontrib>Meshram, Satish P.</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>International Journal of Chemical Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parande, Madan G.</au><au>Ashokkumar, Muthupandian</au><au>Sonawane, Shirish H.</au><au>Mahajan, Candrashekhar M.</au><au>Ramjee, Laxminarayan</au><au>Kunte, Kshitij J.</au><au>Gumfekar, Sarang P.</au><au>Kate, Kunal H.</au><au>Meshram, Satish P.</au><au>Murzin, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrodynamic Cavitation-Assisted Synthesis of Nanocalcite</atitle><jtitle>International Journal of Chemical Engineering</jtitle><date>2010-01-01</date><risdate>2010</risdate><volume>2010</volume><issue>2010</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1687-806X</issn><eissn>1687-8078</eissn><abstract>A systematic study was made on the synthesis of nanocalcite using a hydrodynamic cavitation reactor. The effects of various parameters such as diameter and geometry of orifice, CO2 flow rate, and Ca(OH)2 concentration were investigated. It was observed that the orifice diameter and its geometry had significant effect on the carbonation process. The reaction rate was significantly faster than that observed in a conventional carbonation process. The particle size was significantly affected by the reactor geometry. The results showed that an orifice with 5 holes of 1 mm size resulted in the particle size reduction to 37 nm. The experimental investigation reveals that hydrodynamic cavitation may be more energy efficient.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Puplishing Corporation</pub><doi>10.1155/2010/242963</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-806X
ispartof International Journal of Chemical Engineering, 2010-01, Vol.2010 (2010), p.1-8
issn 1687-806X
1687-8078
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f03148b7bf9d4adb931ce22c845b103f
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); Open Access: Wiley-Blackwell Open Access Journals
subjects Atoms & subatomic particles
Crystallization
Geometry
Grain size
Nanocrystals
Pressure gauges
title Hydrodynamic Cavitation-Assisted Synthesis of Nanocalcite
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A54%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrodynamic%20Cavitation-Assisted%20Synthesis%20of%20Nanocalcite&rft.jtitle=International%20Journal%20of%20Chemical%20Engineering&rft.au=Parande,%20Madan%20G.&rft.date=2010-01-01&rft.volume=2010&rft.issue=2010&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1687-806X&rft.eissn=1687-8078&rft_id=info:doi/10.1155/2010/242963&rft_dat=%3Cproquest_doaj_%3E2286627551%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a553t-ad7559eaa0a8d9d4b652eca6f3c414b76f4e287e48e7725d538ac1cb486cd1243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=855892239&rft_id=info:pmid/&rfr_iscdi=true