Loading…
A Design of Electromagnetic Velocity Sensor with High Sensitivity Based on Dual-Magnet Structure
The most permanent magnets in current electromagnetic velocity sensors are magnet cylinders that have been axially magnetized, with magnetic boots changing the propagation direction of the magnetic induction lines of the magnet cylinders. However, the magnetic field generated by the magnet cylinders...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2022-09, Vol.22 (18), p.6925 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The most permanent magnets in current electromagnetic velocity sensors are magnet cylinders that have been axially magnetized, with magnetic boots changing the propagation direction of the magnetic induction lines of the magnet cylinders. However, the magnetic field generated by the magnet cylinders is not fully utilized, which leads to uneven magnetic field intensity of the working air-gap and high magnetic field intensity of the nonworking air-gap. We propose a novel dual-magnet structure (DM) mainly consisting of two magnet loops that are magnetized radially and a magnetic conductive shaft, adopting a concentric nested configuration. The dual-magnet structure can make the magnetic induction lines enter the working air-gap directly from the magnet and increase the effective magnetic field, which is perpendicular to the coils in the working air-gap. This design can further improve the sensitivity of a velocity sensor and enhance its ability to detect weak signals in microtremor exploration. The validity of the dual-magnet structure has been established by numerical simulations and verified by experiments. The results reveal that the magnetic field intensity is increased by 29.18% and the sensitivity is improved by 23.9%, when the total volume and material of the magnet are unchanged. The full utilization of the material is achieved without increasing the complexity of the structure. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s22186925 |