Loading…

Configuration Design and Gait Planning of a Six-Bar Tensegrity Robot

Due to their high kinematic characteristics, six-bar tensegrities have great potential application value in the field of robotics, especially in the field of deep space exploration robots. In this paper, an ultralight six-bar tensegrity robot is designed, and a gait planning method for continuous mo...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2022-11, Vol.12 (22), p.11845
Main Authors: Hao, Siqi, Liu, Ruiwei, Lin, Xuntao, Li, Chenxiao, Guo, Hongwei, Ye, Zhiwen, Wang, Chunlong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Due to their high kinematic characteristics, six-bar tensegrities have great potential application value in the field of robotics, especially in the field of deep space exploration robots. In this paper, an ultralight six-bar tensegrity robot is designed, and a gait planning method for continuous motion is proposed. First, the equilibrium matrix of the tensegrity structure is constructed, and singular value decomposition (SVD) is performed to find the node coordinates and internal forces of the tensegrity structure. Two representative examples regarding tensegrity structures are presented to demonstrate the capability of the proposed method in the initial selfstress design that satisfies the stability of tensegrities. Furthermore, both the principal rolling analysis and gait planning are also addressed based on the offset of the center of gravity. A six-bar tensegrity robot prototype is developed, and the obstacle avoidance experiment is completed. Finally, the results show that the six-bar tensegrity robot has good kinematic performance. Moreover, this robot is expected to play a key role in future planetary exploration.
ISSN:2076-3417
2076-3417
DOI:10.3390/app122211845