Loading…

Targeting the DNA damage response enhances CD70 CAR-T cell therapy for renal carcinoma by activating the cGAS-STING pathway

Chimeric antigen receptor T-cell (CAR-T) therapy has shown tremendous success in eradicating hematologic malignancies. However, this success has not yet been extrapolated to solid tumors due to the limited infiltration and persistence of CAR-T cells in the tumor microenvironment (TME). In this study...

Full description

Saved in:
Bibliographic Details
Published in:Journal of hematology and oncology 2021-09, Vol.14 (1), p.1-152, Article 152
Main Authors: Ji, Feng, Zhang, Fan, Zhang, Miaomiao, Long, Kaili, Xia, Mingyue, Lu, Fei, Li, Enjie, Chen, Jiannan, Li, Jun, Chen, Zhengliang, Jing, Li, Jia, Shaochang, Yang, Rong, Hu, Zhigang, Guo, Zhigang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Chimeric antigen receptor T-cell (CAR-T) therapy has shown tremendous success in eradicating hematologic malignancies. However, this success has not yet been extrapolated to solid tumors due to the limited infiltration and persistence of CAR-T cells in the tumor microenvironment (TME). In this study, we screened a novel anti-CD70 scFv and generated CD70 CAR-T cells that showed effective antitumor functions against CD70.sup.+ renal carcinoma cells (RCCs) both in vitro and in vivo. We further evaluated the effect and explored the molecular mechanism of a PARP inhibitor (PARPi) in CAR-T cell immunotherapy by administering the PARPi to mouse xenografts model derived from human RCC cells. Treatment with the PARPi promoted CAR-T cell infiltration by stimulating a chemokine milieu that promoted CAR-T cell recruitment and the modulation of immunosuppression in the TME. Moreover, our data demonstrate that PARPi modulates the TME by activating the cGAS-STING pathway, thereby altering the balance of immunostimulatory signaling and enabling low-dose CAR-T cell treatment to induce effective tumor regression. These data demonstrate the application of CD70 CAR-T cell therapeutic strategies for RCC and the cross-talk between targeting DNA damage responses and antitumor CAR-T cell therapy. These findings provide insight into the mechanisms of PARPis in CAR-T cell therapy for RCC and suggest a promising adjuvant therapeutic strategy for CAR-T cell therapy in solid tumors. Keywords: CAR, CD70, RCC, PARP, Renal carcinoma, Tumor microenvironment, cGAS-STING pathway
ISSN:1756-8722
1756-8722
DOI:10.1186/s13045-021-01168-1