Loading…

Seasonal Prediction of Surface Air Temperature across Vietnam Using the Regional Climate Model Version 4.2 (RegCM4.2)

To investigate the ability of dynamical seasonal climate predictions for Vietnam, the RegCM4.2 is employed to perform seasonal prediction of 2 m mean (T2m), maximum (Tx), and minimum (Tn) air temperature for the period from January 2012 to November 2013 by downscaling the NCEP Climate Forecast Syste...

Full description

Saved in:
Bibliographic Details
Published in:Advances in Meteorology 2014-01, Vol.2014 (2014), p.ac1-13
Main Authors: Phan Van, Tan, Van Nguyen, Hiep, Trinh Tuan, Long, Nguyen Quang, Trung, Ngo-Duc, Thanh, Laux, Patrick, Nguyen Xuan, Thanh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a622t-23229f1f70cfc006994a18e3f89bad3b8ca6b9eb14940fbe01c2b7795cdf91473
cites cdi_FETCH-LOGICAL-a622t-23229f1f70cfc006994a18e3f89bad3b8ca6b9eb14940fbe01c2b7795cdf91473
container_end_page 13
container_issue 2014
container_start_page ac1
container_title Advances in Meteorology
container_volume 2014
creator Phan Van, Tan
Van Nguyen, Hiep
Trinh Tuan, Long
Nguyen Quang, Trung
Ngo-Duc, Thanh
Laux, Patrick
Nguyen Xuan, Thanh
description To investigate the ability of dynamical seasonal climate predictions for Vietnam, the RegCM4.2 is employed to perform seasonal prediction of 2 m mean (T2m), maximum (Tx), and minimum (Tn) air temperature for the period from January 2012 to November 2013 by downscaling the NCEP Climate Forecast System (CFS) data. For model bias correction, the model and observed climatology is constructed using the CFS reanalysis and observed temperatures over Vietnam for the period 1980–2010, respectively. The RegCM4.2 forecast is run four times per month from the current month up to the next six months. A model ensemble prediction initialized from the current month is computed from the mean of the four runs within the month. The results showed that, without any bias correction (CTL), the RegCM4.2 forecast has very little or no skill in both tercile and value predictions. With bias correction (BAS), model predictions show improved skill. The experiment in which the results from the BAS experiment are further successively adjusted (SUC) with model bias at one-month lead time of the previous run showed further improvement compared to CTL and BAS. Skill scores of the tercile probability forecasts were found to exceed 0.3 for most of the target months.
doi_str_mv 10.1155/2014/245104
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f0757ac985914a18ad86ac079c5ad651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A415324814</galeid><airiti_id>P20151223002_201412_201512230002_201512230002_ac1_13</airiti_id><doaj_id>oai_doaj_org_article_f0757ac985914a18ad86ac079c5ad651</doaj_id><sourcerecordid>A415324814</sourcerecordid><originalsourceid>FETCH-LOGICAL-a622t-23229f1f70cfc006994a18e3f89bad3b8ca6b9eb14940fbe01c2b7795cdf91473</originalsourceid><addsrcrecordid>eNqFkktr3DAQgE1poSHNqeeCoJe0ZTeSrId1XJY-QhMamsdVzMqjjRavtZVtSv995XXY0FCIdZA0_ubTa4riLaNzxqQ845SJMy4ko-JFccRUpWemZPrlYUzN6-Kk6zY0f6WRyuijYrhG6GILDblKWAfXh9iS6Mn1kDw4JIuQyA1ud5igHxIScCl2HbkL2LewJbddaNekv0fyE9dh71k2YQs9kstYY0PuMHWjUsw5Oc3M8jKPPrwpXnloOjx56I-L2y-fb5bfZhc_vp4vFxczUJz3M15ybjzzmjrvKFXGCGAVlr4yK6jLVeVArQyumDCC-hVS5vhKayNd7Q0TujwuzidvHWFjdynvLP2xEYLdB2JaW0h9cA1aT7XU4Ewlc2ZeBepKgaPaOAm1kiy7TifXLsVfA3a93YbOYdNAi3HoLFOaSWO45s-jUqm8TklH6_sn6CYOKd_jSEleMaWofqTWkLcaWh_7BG6U2oVgsuSiYiJT8_9QudW4DS626EOO_5PwaUrYP2pCf7giRu1YU3asKTvVVKY_TvR9aGv4HZ6B300wZgQ9HGAhVaXGc3-f_kNIoQ-Pp77KFsk4LynleyPbdw8h-mQCjllWln8B4R7jpQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1552816607</pqid></control><display><type>article</type><title>Seasonal Prediction of Surface Air Temperature across Vietnam Using the Regional Climate Model Version 4.2 (RegCM4.2)</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Phan Van, Tan ; Van Nguyen, Hiep ; Trinh Tuan, Long ; Nguyen Quang, Trung ; Ngo-Duc, Thanh ; Laux, Patrick ; Nguyen Xuan, Thanh</creator><contributor>Juang, Hann-Ming H.</contributor><creatorcontrib>Phan Van, Tan ; Van Nguyen, Hiep ; Trinh Tuan, Long ; Nguyen Quang, Trung ; Ngo-Duc, Thanh ; Laux, Patrick ; Nguyen Xuan, Thanh ; Juang, Hann-Ming H.</creatorcontrib><description>To investigate the ability of dynamical seasonal climate predictions for Vietnam, the RegCM4.2 is employed to perform seasonal prediction of 2 m mean (T2m), maximum (Tx), and minimum (Tn) air temperature for the period from January 2012 to November 2013 by downscaling the NCEP Climate Forecast System (CFS) data. For model bias correction, the model and observed climatology is constructed using the CFS reanalysis and observed temperatures over Vietnam for the period 1980–2010, respectively. The RegCM4.2 forecast is run four times per month from the current month up to the next six months. A model ensemble prediction initialized from the current month is computed from the mean of the four runs within the month. The results showed that, without any bias correction (CTL), the RegCM4.2 forecast has very little or no skill in both tercile and value predictions. With bias correction (BAS), model predictions show improved skill. The experiment in which the results from the BAS experiment are further successively adjusted (SUC) with model bias at one-month lead time of the previous run showed further improvement compared to CTL and BAS. Skill scores of the tercile probability forecasts were found to exceed 0.3 for most of the target months.</description><identifier>ISSN: 1687-9309</identifier><identifier>EISSN: 1687-9317</identifier><identifier>DOI: 10.1155/2014/245104</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Limiteds</publisher><subject>Atmospheric temperature ; Bias ; Climate ; Climate change ; Climate models ; Climatology ; Cold ; Dynamical systems ; Lead time ; Mathematical models ; Meteorology ; Precipitation ; Skills ; Studies ; Vietnam ; Weather forecasting</subject><ispartof>Advances in Meteorology, 2014-01, Vol.2014 (2014), p.ac1-13</ispartof><rights>Copyright © 2014 Tan Phan Van et al.</rights><rights>COPYRIGHT 2014 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2014 Tan Phan Van et al. Tan Phan Van et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a622t-23229f1f70cfc006994a18e3f89bad3b8ca6b9eb14940fbe01c2b7795cdf91473</citedby><cites>FETCH-LOGICAL-a622t-23229f1f70cfc006994a18e3f89bad3b8ca6b9eb14940fbe01c2b7795cdf91473</cites><orcidid>0000-0002-8657-6152 ; 0000-0003-0756-1217 ; 0000-0003-1759-7782</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1552816607/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1552816607?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,25740,27911,27912,36999,37000,44577,74881</link.rule.ids></links><search><contributor>Juang, Hann-Ming H.</contributor><creatorcontrib>Phan Van, Tan</creatorcontrib><creatorcontrib>Van Nguyen, Hiep</creatorcontrib><creatorcontrib>Trinh Tuan, Long</creatorcontrib><creatorcontrib>Nguyen Quang, Trung</creatorcontrib><creatorcontrib>Ngo-Duc, Thanh</creatorcontrib><creatorcontrib>Laux, Patrick</creatorcontrib><creatorcontrib>Nguyen Xuan, Thanh</creatorcontrib><title>Seasonal Prediction of Surface Air Temperature across Vietnam Using the Regional Climate Model Version 4.2 (RegCM4.2)</title><title>Advances in Meteorology</title><description>To investigate the ability of dynamical seasonal climate predictions for Vietnam, the RegCM4.2 is employed to perform seasonal prediction of 2 m mean (T2m), maximum (Tx), and minimum (Tn) air temperature for the period from January 2012 to November 2013 by downscaling the NCEP Climate Forecast System (CFS) data. For model bias correction, the model and observed climatology is constructed using the CFS reanalysis and observed temperatures over Vietnam for the period 1980–2010, respectively. The RegCM4.2 forecast is run four times per month from the current month up to the next six months. A model ensemble prediction initialized from the current month is computed from the mean of the four runs within the month. The results showed that, without any bias correction (CTL), the RegCM4.2 forecast has very little or no skill in both tercile and value predictions. With bias correction (BAS), model predictions show improved skill. The experiment in which the results from the BAS experiment are further successively adjusted (SUC) with model bias at one-month lead time of the previous run showed further improvement compared to CTL and BAS. Skill scores of the tercile probability forecasts were found to exceed 0.3 for most of the target months.</description><subject>Atmospheric temperature</subject><subject>Bias</subject><subject>Climate</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Climatology</subject><subject>Cold</subject><subject>Dynamical systems</subject><subject>Lead time</subject><subject>Mathematical models</subject><subject>Meteorology</subject><subject>Precipitation</subject><subject>Skills</subject><subject>Studies</subject><subject>Vietnam</subject><subject>Weather forecasting</subject><issn>1687-9309</issn><issn>1687-9317</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkktr3DAQgE1poSHNqeeCoJe0ZTeSrId1XJY-QhMamsdVzMqjjRavtZVtSv995XXY0FCIdZA0_ubTa4riLaNzxqQ845SJMy4ko-JFccRUpWemZPrlYUzN6-Kk6zY0f6WRyuijYrhG6GILDblKWAfXh9iS6Mn1kDw4JIuQyA1ud5igHxIScCl2HbkL2LewJbddaNekv0fyE9dh71k2YQs9kstYY0PuMHWjUsw5Oc3M8jKPPrwpXnloOjx56I-L2y-fb5bfZhc_vp4vFxczUJz3M15ybjzzmjrvKFXGCGAVlr4yK6jLVeVArQyumDCC-hVS5vhKayNd7Q0TujwuzidvHWFjdynvLP2xEYLdB2JaW0h9cA1aT7XU4Ewlc2ZeBepKgaPaOAm1kiy7TifXLsVfA3a93YbOYdNAi3HoLFOaSWO45s-jUqm8TklH6_sn6CYOKd_jSEleMaWofqTWkLcaWh_7BG6U2oVgsuSiYiJT8_9QudW4DS626EOO_5PwaUrYP2pCf7giRu1YU3asKTvVVKY_TvR9aGv4HZ6B300wZgQ9HGAhVaXGc3-f_kNIoQ-Pp77KFsk4LynleyPbdw8h-mQCjllWln8B4R7jpQ</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Phan Van, Tan</creator><creator>Van Nguyen, Hiep</creator><creator>Trinh Tuan, Long</creator><creator>Nguyen Quang, Trung</creator><creator>Ngo-Duc, Thanh</creator><creator>Laux, Patrick</creator><creator>Nguyen Xuan, Thanh</creator><general>Hindawi Limiteds</general><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>188</scope><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8657-6152</orcidid><orcidid>https://orcid.org/0000-0003-0756-1217</orcidid><orcidid>https://orcid.org/0000-0003-1759-7782</orcidid></search><sort><creationdate>20140101</creationdate><title>Seasonal Prediction of Surface Air Temperature across Vietnam Using the Regional Climate Model Version 4.2 (RegCM4.2)</title><author>Phan Van, Tan ; Van Nguyen, Hiep ; Trinh Tuan, Long ; Nguyen Quang, Trung ; Ngo-Duc, Thanh ; Laux, Patrick ; Nguyen Xuan, Thanh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a622t-23229f1f70cfc006994a18e3f89bad3b8ca6b9eb14940fbe01c2b7795cdf91473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Atmospheric temperature</topic><topic>Bias</topic><topic>Climate</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Climatology</topic><topic>Cold</topic><topic>Dynamical systems</topic><topic>Lead time</topic><topic>Mathematical models</topic><topic>Meteorology</topic><topic>Precipitation</topic><topic>Skills</topic><topic>Studies</topic><topic>Vietnam</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Phan Van, Tan</creatorcontrib><creatorcontrib>Van Nguyen, Hiep</creatorcontrib><creatorcontrib>Trinh Tuan, Long</creatorcontrib><creatorcontrib>Nguyen Quang, Trung</creatorcontrib><creatorcontrib>Ngo-Duc, Thanh</creatorcontrib><creatorcontrib>Laux, Patrick</creatorcontrib><creatorcontrib>Nguyen Xuan, Thanh</creatorcontrib><collection>Airiti Library</collection><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advances in Meteorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Phan Van, Tan</au><au>Van Nguyen, Hiep</au><au>Trinh Tuan, Long</au><au>Nguyen Quang, Trung</au><au>Ngo-Duc, Thanh</au><au>Laux, Patrick</au><au>Nguyen Xuan, Thanh</au><au>Juang, Hann-Ming H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Seasonal Prediction of Surface Air Temperature across Vietnam Using the Regional Climate Model Version 4.2 (RegCM4.2)</atitle><jtitle>Advances in Meteorology</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>2014</volume><issue>2014</issue><spage>ac1</spage><epage>13</epage><pages>ac1-13</pages><issn>1687-9309</issn><eissn>1687-9317</eissn><abstract>To investigate the ability of dynamical seasonal climate predictions for Vietnam, the RegCM4.2 is employed to perform seasonal prediction of 2 m mean (T2m), maximum (Tx), and minimum (Tn) air temperature for the period from January 2012 to November 2013 by downscaling the NCEP Climate Forecast System (CFS) data. For model bias correction, the model and observed climatology is constructed using the CFS reanalysis and observed temperatures over Vietnam for the period 1980–2010, respectively. The RegCM4.2 forecast is run four times per month from the current month up to the next six months. A model ensemble prediction initialized from the current month is computed from the mean of the four runs within the month. The results showed that, without any bias correction (CTL), the RegCM4.2 forecast has very little or no skill in both tercile and value predictions. With bias correction (BAS), model predictions show improved skill. The experiment in which the results from the BAS experiment are further successively adjusted (SUC) with model bias at one-month lead time of the previous run showed further improvement compared to CTL and BAS. Skill scores of the tercile probability forecasts were found to exceed 0.3 for most of the target months.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Limiteds</pub><doi>10.1155/2014/245104</doi><orcidid>https://orcid.org/0000-0002-8657-6152</orcidid><orcidid>https://orcid.org/0000-0003-0756-1217</orcidid><orcidid>https://orcid.org/0000-0003-1759-7782</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-9309
ispartof Advances in Meteorology, 2014-01, Vol.2014 (2014), p.ac1-13
issn 1687-9309
1687-9317
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f0757ac985914a18ad86ac079c5ad651
source Wiley Online Library Open Access; Publicly Available Content Database
subjects Atmospheric temperature
Bias
Climate
Climate change
Climate models
Climatology
Cold
Dynamical systems
Lead time
Mathematical models
Meteorology
Precipitation
Skills
Studies
Vietnam
Weather forecasting
title Seasonal Prediction of Surface Air Temperature across Vietnam Using the Regional Climate Model Version 4.2 (RegCM4.2)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A40%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Seasonal%20Prediction%20of%20Surface%20Air%20Temperature%20across%20Vietnam%20Using%20the%20Regional%20Climate%20Model%20Version%204.2%20(RegCM4.2)&rft.jtitle=Advances%20in%20Meteorology&rft.au=Phan%20Van,%20Tan&rft.date=2014-01-01&rft.volume=2014&rft.issue=2014&rft.spage=ac1&rft.epage=13&rft.pages=ac1-13&rft.issn=1687-9309&rft.eissn=1687-9317&rft_id=info:doi/10.1155/2014/245104&rft_dat=%3Cgale_doaj_%3EA415324814%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a622t-23229f1f70cfc006994a18e3f89bad3b8ca6b9eb14940fbe01c2b7795cdf91473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1552816607&rft_id=info:pmid/&rft_galeid=A415324814&rft_airiti_id=P20151223002_201412_201512230002_201512230002_ac1_13&rfr_iscdi=true