Loading…
Seasonal Prediction of Surface Air Temperature across Vietnam Using the Regional Climate Model Version 4.2 (RegCM4.2)
To investigate the ability of dynamical seasonal climate predictions for Vietnam, the RegCM4.2 is employed to perform seasonal prediction of 2 m mean (T2m), maximum (Tx), and minimum (Tn) air temperature for the period from January 2012 to November 2013 by downscaling the NCEP Climate Forecast Syste...
Saved in:
Published in: | Advances in Meteorology 2014-01, Vol.2014 (2014), p.ac1-13 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a622t-23229f1f70cfc006994a18e3f89bad3b8ca6b9eb14940fbe01c2b7795cdf91473 |
---|---|
cites | cdi_FETCH-LOGICAL-a622t-23229f1f70cfc006994a18e3f89bad3b8ca6b9eb14940fbe01c2b7795cdf91473 |
container_end_page | 13 |
container_issue | 2014 |
container_start_page | ac1 |
container_title | Advances in Meteorology |
container_volume | 2014 |
creator | Phan Van, Tan Van Nguyen, Hiep Trinh Tuan, Long Nguyen Quang, Trung Ngo-Duc, Thanh Laux, Patrick Nguyen Xuan, Thanh |
description | To investigate the ability of dynamical seasonal climate predictions for Vietnam, the RegCM4.2 is employed to perform seasonal prediction of 2 m mean (T2m), maximum (Tx), and minimum (Tn) air temperature for the period from January 2012 to November 2013 by downscaling the NCEP Climate Forecast System (CFS) data. For model bias correction, the model and observed climatology is constructed using the CFS reanalysis and observed temperatures over Vietnam for the period 1980–2010, respectively. The RegCM4.2 forecast is run four times per month from the current month up to the next six months. A model ensemble prediction initialized from the current month is computed from the mean of the four runs within the month. The results showed that, without any bias correction (CTL), the RegCM4.2 forecast has very little or no skill in both tercile and value predictions. With bias correction (BAS), model predictions show improved skill. The experiment in which the results from the BAS experiment are further successively adjusted (SUC) with model bias at one-month lead time of the previous run showed further improvement compared to CTL and BAS. Skill scores of the tercile probability forecasts were found to exceed 0.3 for most of the target months. |
doi_str_mv | 10.1155/2014/245104 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f0757ac985914a18ad86ac079c5ad651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A415324814</galeid><airiti_id>P20151223002_201412_201512230002_201512230002_ac1_13</airiti_id><doaj_id>oai_doaj_org_article_f0757ac985914a18ad86ac079c5ad651</doaj_id><sourcerecordid>A415324814</sourcerecordid><originalsourceid>FETCH-LOGICAL-a622t-23229f1f70cfc006994a18e3f89bad3b8ca6b9eb14940fbe01c2b7795cdf91473</originalsourceid><addsrcrecordid>eNqFkktr3DAQgE1poSHNqeeCoJe0ZTeSrId1XJY-QhMamsdVzMqjjRavtZVtSv995XXY0FCIdZA0_ubTa4riLaNzxqQ845SJMy4ko-JFccRUpWemZPrlYUzN6-Kk6zY0f6WRyuijYrhG6GILDblKWAfXh9iS6Mn1kDw4JIuQyA1ud5igHxIScCl2HbkL2LewJbddaNekv0fyE9dh71k2YQs9kstYY0PuMHWjUsw5Oc3M8jKPPrwpXnloOjx56I-L2y-fb5bfZhc_vp4vFxczUJz3M15ybjzzmjrvKFXGCGAVlr4yK6jLVeVArQyumDCC-hVS5vhKayNd7Q0TujwuzidvHWFjdynvLP2xEYLdB2JaW0h9cA1aT7XU4Ewlc2ZeBepKgaPaOAm1kiy7TifXLsVfA3a93YbOYdNAi3HoLFOaSWO45s-jUqm8TklH6_sn6CYOKd_jSEleMaWofqTWkLcaWh_7BG6U2oVgsuSiYiJT8_9QudW4DS626EOO_5PwaUrYP2pCf7giRu1YU3asKTvVVKY_TvR9aGv4HZ6B300wZgQ9HGAhVaXGc3-f_kNIoQ-Pp77KFsk4LynleyPbdw8h-mQCjllWln8B4R7jpQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1552816607</pqid></control><display><type>article</type><title>Seasonal Prediction of Surface Air Temperature across Vietnam Using the Regional Climate Model Version 4.2 (RegCM4.2)</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Phan Van, Tan ; Van Nguyen, Hiep ; Trinh Tuan, Long ; Nguyen Quang, Trung ; Ngo-Duc, Thanh ; Laux, Patrick ; Nguyen Xuan, Thanh</creator><contributor>Juang, Hann-Ming H.</contributor><creatorcontrib>Phan Van, Tan ; Van Nguyen, Hiep ; Trinh Tuan, Long ; Nguyen Quang, Trung ; Ngo-Duc, Thanh ; Laux, Patrick ; Nguyen Xuan, Thanh ; Juang, Hann-Ming H.</creatorcontrib><description>To investigate the ability of dynamical seasonal climate predictions for Vietnam, the RegCM4.2 is employed to perform seasonal prediction of 2 m mean (T2m), maximum (Tx), and minimum (Tn) air temperature for the period from January 2012 to November 2013 by downscaling the NCEP Climate Forecast System (CFS) data. For model bias correction, the model and observed climatology is constructed using the CFS reanalysis and observed temperatures over Vietnam for the period 1980–2010, respectively. The RegCM4.2 forecast is run four times per month from the current month up to the next six months. A model ensemble prediction initialized from the current month is computed from the mean of the four runs within the month. The results showed that, without any bias correction (CTL), the RegCM4.2 forecast has very little or no skill in both tercile and value predictions. With bias correction (BAS), model predictions show improved skill. The experiment in which the results from the BAS experiment are further successively adjusted (SUC) with model bias at one-month lead time of the previous run showed further improvement compared to CTL and BAS. Skill scores of the tercile probability forecasts were found to exceed 0.3 for most of the target months.</description><identifier>ISSN: 1687-9309</identifier><identifier>EISSN: 1687-9317</identifier><identifier>DOI: 10.1155/2014/245104</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Limiteds</publisher><subject>Atmospheric temperature ; Bias ; Climate ; Climate change ; Climate models ; Climatology ; Cold ; Dynamical systems ; Lead time ; Mathematical models ; Meteorology ; Precipitation ; Skills ; Studies ; Vietnam ; Weather forecasting</subject><ispartof>Advances in Meteorology, 2014-01, Vol.2014 (2014), p.ac1-13</ispartof><rights>Copyright © 2014 Tan Phan Van et al.</rights><rights>COPYRIGHT 2014 John Wiley & Sons, Inc.</rights><rights>Copyright © 2014 Tan Phan Van et al. Tan Phan Van et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a622t-23229f1f70cfc006994a18e3f89bad3b8ca6b9eb14940fbe01c2b7795cdf91473</citedby><cites>FETCH-LOGICAL-a622t-23229f1f70cfc006994a18e3f89bad3b8ca6b9eb14940fbe01c2b7795cdf91473</cites><orcidid>0000-0002-8657-6152 ; 0000-0003-0756-1217 ; 0000-0003-1759-7782</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1552816607/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1552816607?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,25740,27911,27912,36999,37000,44577,74881</link.rule.ids></links><search><contributor>Juang, Hann-Ming H.</contributor><creatorcontrib>Phan Van, Tan</creatorcontrib><creatorcontrib>Van Nguyen, Hiep</creatorcontrib><creatorcontrib>Trinh Tuan, Long</creatorcontrib><creatorcontrib>Nguyen Quang, Trung</creatorcontrib><creatorcontrib>Ngo-Duc, Thanh</creatorcontrib><creatorcontrib>Laux, Patrick</creatorcontrib><creatorcontrib>Nguyen Xuan, Thanh</creatorcontrib><title>Seasonal Prediction of Surface Air Temperature across Vietnam Using the Regional Climate Model Version 4.2 (RegCM4.2)</title><title>Advances in Meteorology</title><description>To investigate the ability of dynamical seasonal climate predictions for Vietnam, the RegCM4.2 is employed to perform seasonal prediction of 2 m mean (T2m), maximum (Tx), and minimum (Tn) air temperature for the period from January 2012 to November 2013 by downscaling the NCEP Climate Forecast System (CFS) data. For model bias correction, the model and observed climatology is constructed using the CFS reanalysis and observed temperatures over Vietnam for the period 1980–2010, respectively. The RegCM4.2 forecast is run four times per month from the current month up to the next six months. A model ensemble prediction initialized from the current month is computed from the mean of the four runs within the month. The results showed that, without any bias correction (CTL), the RegCM4.2 forecast has very little or no skill in both tercile and value predictions. With bias correction (BAS), model predictions show improved skill. The experiment in which the results from the BAS experiment are further successively adjusted (SUC) with model bias at one-month lead time of the previous run showed further improvement compared to CTL and BAS. Skill scores of the tercile probability forecasts were found to exceed 0.3 for most of the target months.</description><subject>Atmospheric temperature</subject><subject>Bias</subject><subject>Climate</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Climatology</subject><subject>Cold</subject><subject>Dynamical systems</subject><subject>Lead time</subject><subject>Mathematical models</subject><subject>Meteorology</subject><subject>Precipitation</subject><subject>Skills</subject><subject>Studies</subject><subject>Vietnam</subject><subject>Weather forecasting</subject><issn>1687-9309</issn><issn>1687-9317</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkktr3DAQgE1poSHNqeeCoJe0ZTeSrId1XJY-QhMamsdVzMqjjRavtZVtSv995XXY0FCIdZA0_ubTa4riLaNzxqQ845SJMy4ko-JFccRUpWemZPrlYUzN6-Kk6zY0f6WRyuijYrhG6GILDblKWAfXh9iS6Mn1kDw4JIuQyA1ud5igHxIScCl2HbkL2LewJbddaNekv0fyE9dh71k2YQs9kstYY0PuMHWjUsw5Oc3M8jKPPrwpXnloOjx56I-L2y-fb5bfZhc_vp4vFxczUJz3M15ybjzzmjrvKFXGCGAVlr4yK6jLVeVArQyumDCC-hVS5vhKayNd7Q0TujwuzidvHWFjdynvLP2xEYLdB2JaW0h9cA1aT7XU4Ewlc2ZeBepKgaPaOAm1kiy7TifXLsVfA3a93YbOYdNAi3HoLFOaSWO45s-jUqm8TklH6_sn6CYOKd_jSEleMaWofqTWkLcaWh_7BG6U2oVgsuSiYiJT8_9QudW4DS626EOO_5PwaUrYP2pCf7giRu1YU3asKTvVVKY_TvR9aGv4HZ6B300wZgQ9HGAhVaXGc3-f_kNIoQ-Pp77KFsk4LynleyPbdw8h-mQCjllWln8B4R7jpQ</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Phan Van, Tan</creator><creator>Van Nguyen, Hiep</creator><creator>Trinh Tuan, Long</creator><creator>Nguyen Quang, Trung</creator><creator>Ngo-Duc, Thanh</creator><creator>Laux, Patrick</creator><creator>Nguyen Xuan, Thanh</creator><general>Hindawi Limiteds</general><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>188</scope><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8657-6152</orcidid><orcidid>https://orcid.org/0000-0003-0756-1217</orcidid><orcidid>https://orcid.org/0000-0003-1759-7782</orcidid></search><sort><creationdate>20140101</creationdate><title>Seasonal Prediction of Surface Air Temperature across Vietnam Using the Regional Climate Model Version 4.2 (RegCM4.2)</title><author>Phan Van, Tan ; Van Nguyen, Hiep ; Trinh Tuan, Long ; Nguyen Quang, Trung ; Ngo-Duc, Thanh ; Laux, Patrick ; Nguyen Xuan, Thanh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a622t-23229f1f70cfc006994a18e3f89bad3b8ca6b9eb14940fbe01c2b7795cdf91473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Atmospheric temperature</topic><topic>Bias</topic><topic>Climate</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Climatology</topic><topic>Cold</topic><topic>Dynamical systems</topic><topic>Lead time</topic><topic>Mathematical models</topic><topic>Meteorology</topic><topic>Precipitation</topic><topic>Skills</topic><topic>Studies</topic><topic>Vietnam</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Phan Van, Tan</creatorcontrib><creatorcontrib>Van Nguyen, Hiep</creatorcontrib><creatorcontrib>Trinh Tuan, Long</creatorcontrib><creatorcontrib>Nguyen Quang, Trung</creatorcontrib><creatorcontrib>Ngo-Duc, Thanh</creatorcontrib><creatorcontrib>Laux, Patrick</creatorcontrib><creatorcontrib>Nguyen Xuan, Thanh</creatorcontrib><collection>Airiti Library</collection><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advances in Meteorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Phan Van, Tan</au><au>Van Nguyen, Hiep</au><au>Trinh Tuan, Long</au><au>Nguyen Quang, Trung</au><au>Ngo-Duc, Thanh</au><au>Laux, Patrick</au><au>Nguyen Xuan, Thanh</au><au>Juang, Hann-Ming H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Seasonal Prediction of Surface Air Temperature across Vietnam Using the Regional Climate Model Version 4.2 (RegCM4.2)</atitle><jtitle>Advances in Meteorology</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>2014</volume><issue>2014</issue><spage>ac1</spage><epage>13</epage><pages>ac1-13</pages><issn>1687-9309</issn><eissn>1687-9317</eissn><abstract>To investigate the ability of dynamical seasonal climate predictions for Vietnam, the RegCM4.2 is employed to perform seasonal prediction of 2 m mean (T2m), maximum (Tx), and minimum (Tn) air temperature for the period from January 2012 to November 2013 by downscaling the NCEP Climate Forecast System (CFS) data. For model bias correction, the model and observed climatology is constructed using the CFS reanalysis and observed temperatures over Vietnam for the period 1980–2010, respectively. The RegCM4.2 forecast is run four times per month from the current month up to the next six months. A model ensemble prediction initialized from the current month is computed from the mean of the four runs within the month. The results showed that, without any bias correction (CTL), the RegCM4.2 forecast has very little or no skill in both tercile and value predictions. With bias correction (BAS), model predictions show improved skill. The experiment in which the results from the BAS experiment are further successively adjusted (SUC) with model bias at one-month lead time of the previous run showed further improvement compared to CTL and BAS. Skill scores of the tercile probability forecasts were found to exceed 0.3 for most of the target months.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Limiteds</pub><doi>10.1155/2014/245104</doi><orcidid>https://orcid.org/0000-0002-8657-6152</orcidid><orcidid>https://orcid.org/0000-0003-0756-1217</orcidid><orcidid>https://orcid.org/0000-0003-1759-7782</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-9309 |
ispartof | Advances in Meteorology, 2014-01, Vol.2014 (2014), p.ac1-13 |
issn | 1687-9309 1687-9317 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_f0757ac985914a18ad86ac079c5ad651 |
source | Wiley Online Library Open Access; Publicly Available Content Database |
subjects | Atmospheric temperature Bias Climate Climate change Climate models Climatology Cold Dynamical systems Lead time Mathematical models Meteorology Precipitation Skills Studies Vietnam Weather forecasting |
title | Seasonal Prediction of Surface Air Temperature across Vietnam Using the Regional Climate Model Version 4.2 (RegCM4.2) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A40%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Seasonal%20Prediction%20of%20Surface%20Air%20Temperature%20across%20Vietnam%20Using%20the%20Regional%20Climate%20Model%20Version%204.2%20(RegCM4.2)&rft.jtitle=Advances%20in%20Meteorology&rft.au=Phan%20Van,%20Tan&rft.date=2014-01-01&rft.volume=2014&rft.issue=2014&rft.spage=ac1&rft.epage=13&rft.pages=ac1-13&rft.issn=1687-9309&rft.eissn=1687-9317&rft_id=info:doi/10.1155/2014/245104&rft_dat=%3Cgale_doaj_%3EA415324814%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a622t-23229f1f70cfc006994a18e3f89bad3b8ca6b9eb14940fbe01c2b7795cdf91473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1552816607&rft_id=info:pmid/&rft_galeid=A415324814&rft_airiti_id=P20151223002_201412_201512230002_201512230002_ac1_13&rfr_iscdi=true |