Loading…
Pharmaceuticals in Coastal Waters: An UHPLC-TOF-MS Multi-Residue Approach
Anthropogenic chemical contamination represents a key stressor of natural environments with pharmaceuticals comprising a particular group of emerging pollutants with the potential to induce biological responses in non-target organisms. Therefore, an analytical method based on ultra-high-performance...
Saved in:
Published in: | Applied sciences 2023-05, Vol.13 (10), p.5975 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Anthropogenic chemical contamination represents a key stressor of natural environments with pharmaceuticals comprising a particular group of emerging pollutants with the potential to induce biological responses in non-target organisms. Therefore, an analytical method based on ultra-high-performance liquid chromatography coupled to time-of-flight tandem mass spectrometry (UHPLC-TOF-MS) was developed for estuarine and seawaters, targeting 63 globally used pharmaceuticals (including amoxicillin, ciprofloxacin, sulfamethoxazole, trimethoprim and venlafaxine included in the Surface Water Watch List) from 8 therapeutic groups: antibiotics, analgesic, NSAIDs, antidepressants, β-blockers, lipid regulators, anticonvulsants and antihypertensive drugs. The method presents high selectivity and sensitivity, with the limits of detection ranging from 0.01 to 8.92 ng/L and the limits of quantification from 0.02 to 29.73 ng/L. Considering precision, the highest value was achieved for amoxicillin (20.9%) and the lower for ofloxacin (2.6%), while recoveries ranged from 80.6 to 112.6%. Overall, the quantification method was highly efficient for multi-residues quantification in such complex environmental samples. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app13105975 |