Loading…

Microglial PGC-1α protects against ischemic brain injury by suppressing neuroinflammation

Neuroinflammation and immune responses occurring minutes to hours after stroke are associated with brain injury after acute ischemic stroke (AIS). PPARγ coactivator-1α (PGC-1α), as a master coregulator of gene expression in mitochondrial biogenesis, was found to be transiently upregulated in microgl...

Full description

Saved in:
Bibliographic Details
Published in:Genome medicine 2021-03, Vol.13 (1), p.47-47, Article 47
Main Authors: Han, Bin, Jiang, Wei, Cui, Pan, Zheng, Kai, Dang, Chun, Wang, Junjie, Li, He, Chen, Lin, Zhang, Rongxin, Wang, Qing Mei, Ju, Zhenyu, Hao, Junwei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Neuroinflammation and immune responses occurring minutes to hours after stroke are associated with brain injury after acute ischemic stroke (AIS). PPARγ coactivator-1α (PGC-1α), as a master coregulator of gene expression in mitochondrial biogenesis, was found to be transiently upregulated in microglia after AIS. However, the role of microglial PGC-1α in poststroke immune modulation remains unknown. PGC-1α expression in microglia from human and mouse brain samples following ischemic stroke was first determined. Subsequently, we employed transgenic mice with microglia-specific overexpression of PGC-1α for middle cerebral artery occlusion (MCAO). The morphology and gene expression profile of microglia with PGC-1α overexpression were evaluated. Downstream inflammatory cytokine production and NLRP3 activation were also determined. ChIP-Seq analysis was performed to detect PGC-1α-binding sites in microglia. Autophagic and mitophagic activity was further monitored by immunofluorescence staining. Unc-51-like autophagy activating kinase 1 (ULK1) expression was evaluated under the PGC-1α interaction with ERRα. Finally, pharmacological inhibition and genomic knockdown of ULK1 were performed to estimate the role of ULK1 in mediating mitophagic activity after ischemic stroke. PGC-1α expression was shortly increased after ischemic stroke, not only in human brain samples but also in mouse brain samples. Microglia-specific PGC-1α overexpressing mice exhibited significantly decreased neurologic deficits after ischemic injury, with reduced NLRP3 activation and proinflammatory cytokine production. ChIP-Seq analysis and KEGG pathway analysis revealed that mitophagy was significantly enhanced. PGC-1α significantly promoted autophagic flux and induced autolysosome formation. More specifically, the autophagic clearance of mitochondria was enhanced by PGC-1α regulation, indicating the important role of mitophagy. Pharmacological inhibition or knockdown of ULK1 expression impaired autophagic/mitophagic activity, thus abolishing the neuroprotective effects of PGC-1α. Mechanistically, in AIS, PGC-1α promotes autophagy and mitophagy through ULK1 and reduces NLRP3 activation. Our findings indicate that microglial PGC-1α may be a promising therapeutic target for AIS.
ISSN:1756-994X
1756-994X
DOI:10.1186/s13073-021-00863-5